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Abstract. Expressions are derived for the mass of a stationary axisymmetric solution 
of the Einstein equations containing a black hole surrounded by matter and for the 
difference in mass between two neighboring such solutions. Two of the quantities which 
appear in these expressions, namely the area A of the event horizon and the "surface 
gravity"~c of the black hole, have a close analogy with entropy and temperature respectively. 
This analogy suggests the formulation of four laws of black hole mechanics which corre- 
spond to and in some ways transcend the four laws of thermodynamics. 

1. Introduction 

It is generally believed that  a gravitat ionally collapsing body  will 
give rise to a black hole and that  this black hole will settle down to a 
s ta t ionary state. If the black hole is rotating, the stat ionary state must  
be axisymmetric  1-1] (An improved version of this theorem involving 
weaker assumpt ions  is outl ined in [-2] and is given in detail in [-3])° 
It has been shown that  s ta t ionary axisymmetric black hole solutions 
which are empty  outside the event hor izon fall into discrete families 
each of which depends on only two parameters,  the mass M and the 
angular  m o m e n t u m  J [-4-6]. The Kerr  solutions for M 4 >  j2  are one 
such family. It seems unlikely that  there are any others. It also seems reason- 
able to suppose that  the N e w m a n - K e r r  solutions for M 4 >  j 2 +  M2Q2, 
where Q is the electric charge, are the only stat ionary axisymmetric black 
hole solutions which are empty  outside the event hor izon apar t  f rom 
an electromagnetic  field. On  the other hand there will be an infinite 
dimensional  family of s tat ionary axisymmetric solutions in which 
there are rings of  mat ter  orbit ing the black hole. In Sections 2 and 3 of  
this paper  we shall derive formulae for the mass of  such a solution and 
for the difference in mass of two nearby solutions, These formulae 
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generalise the expressions found by Smarr [7] and Beckenstein [8] 
for the Kerr and Newman-Kerr solutions. We show that the quantities 
appearing in the formulae have well-defined physical interpretations. 
Of particular interest are the area A of the event horizon and the "surface 
gravity" ~c, which appear together. These have strong analogies to 
entropy and temperature respectively. Pursuing this analogy we are 
led in Section 4 to formulate four laws of black hole mechanics which 
are similar to, but distinct from, the four laws of thermodynamics. 

2. The Integral Formula 

In a stationary axisymmetric asymptotically flat space, there is a 
unique time translational Killing vector K a which is timelike near infinity 
with K " K a = - 1  and a unique rotational Killing vector K" whose 
orbits are closed curves with parameter length 2re. These Killing vectors 
obey equations 

Ko;b = Kto;bj, /¢~;b =/~Lo;bl, (1) 
Ka;b[¢ b =/¢~;b Kb , (2) 

K";bb = -- R"b Kb , (3) 

Ka; b b = - -  R% I£ b , (4) 

where a semicolon denotes the covariant derivatives, square brackets 
around indices imply antisymmetrization and R~b = Racb c with 

__1 a 
1)d;[bc] - -  ~ Radbc v 

for any vector v ~. Since K~; b is antisymmetric, one can integrate Eq. (3) 
over a hypersurface S and transfer the volume on the left to an integral 
over a 2-surface 0S bounding S: 

Ka;bdXab = --~ R~KbdXa,  (5) 
~S S 

where dZ~b and dZa are the surface elements of 0S and S respectively. 
We shall choose the surface to be spacelike, asymptotically flat, tangent 
to the rotation Killing vector/£~, and to intersect the event horizon [1] 
in a 2-surface gB. The boundary aS of S consists of c~B and a 2-surface 
0S~ at infinity. For an asymptotically fiat space, the integral over 0S~ 
in equation (5) is equal to - 4rcM, where M is the mass as measured from 
infinity. Thus 

1 
M = f (2T. b - Ta  b) K~dZb + ~-~IoB K~;bdZ~b' (6) 

S 
where 

R a b - - 1 R g a b  = 87ZTab, 



Laws of Black Hole Mechanics 163 

The first integral on the right can be regarded as the contribution to the 
total mass of the matter  outside the event horizon, and the second 
integral may be regarded as the mass of the black hole. One can integrate 
Eq. (4) similarly to obtain an expression for the total angular momen tum 
J as measured asymptotically from infinity, 

1 
J =  - !  TabI~bdXa- ~ JB I(a;bdZab" (7) 

The first integral on the right is the angular momentum of the matter,  
and the second integral can be regarded as the angular momentum 
of the black hole. 

One can introduce a time coordinate t which measures the parameter  
distance from S along the integral curves of K a (i.e. t;aK ~ = 1). The null 
vector P = d x a / d t ,  tangent to the generators of the horizon, can be 
expressed as 

l a = g a + QHI( a . (8) 

The coefficient f2 H is the angular velocity of the black hole and is the 
same at all points of the horizon [9]. Thus one can rewrite Eq. (6) as 

M = 5 ( 2 T b  - TeS~)K.dXb+2aHJH ÷ 1 ~ l.;bdXab (9) 
s 4re 0B ' 

where 
1 

Jr' = -  8-7 .f R°;bdX°b 
aB 

is the angular momen tum of the black hole. One can express dZ~b as 
I[onb]dA , where n~ is the other null vector orthogonal to c~B, normalized 
so that noP= - 1, and clA is the surface area element of 0B. Thus the 
last term on the right of Eq. (9) is 

1 
4re "( ~c d A , 

e~ 

where ~ =--la;bn~l b represents the extent to which the time coordinate 
t is not an affine parameter  along the generators of the horizon. One can 
think of le as the "surface gravity" of the black hole in the following sense: 
a particle outside the ho r i zon  which rigidly corotates with the black 
hole has an angular velocity (2•, a four-velocity v ~ = v'(K a + F2HK~), and 
an acceleration four-vector v~;bv b. The magnitude of the acceleration, 
multiplied by a factor 1/v ~ to convert f rom change in velocity per unit 
proper time to change in velocity per unit coordinate time t, tends to ~c 
when the particle is infinitesimally close to the event horizon. 

We shall now show that ~: is constant over the horizon. Let m a, ~ 
be complex conjugate null vectors lying in 0B and normalised so that 
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m~Na = t. Then 

tC;ama = - -  ( la;b na lb);cmC (10) 

= - I , ; b c n a l b m  ~ - -  l a ; b n a f l b m  ~ - -  la;bnalb;cm ~ . 

Since I a is a Killing vector, Ia;b~ = Rd~ba ld. The normalization of the null 
tetrad on the horizon, from which 

gab = - -  naIb - -  lanb + ma mb + ~ tamb , 

is used to put the second term in the form ~cl~;~narn ~. The third term is 
- x l a ; ~ n " r n  ~ as a result of the vanishing of the shear and convergence 
of the generators of the horizon, l a ; b m " N  b = 0 = Ia;bmarn b. Thus 

~c;~rn ~ = - R~b~d l"mb  lCn e . (t 1) 

But on the horizon 
0 = ( Ia ;bm"mb);cm c 

= R d , b f l a r n a N b m  ~ (12) 

= _ R a b l d m  b + R a b c f l a m b l C n  a . 

By the Einstein equations R b e l b m  d =  8re Tbdlbm d. 
If energy-momentum tensor obeys the Dominant  Energy Condition 

[10], T b f l  b will be a non-spacelike vector. However T b f l b l d =  0 on the 
horizon since the shear and convergence of the horizon are zero. This 
shows that Thai b m u s t  be zero or parallel to /e and that Tbdlbm e= O. 

Thus ~c;am a is zero and ~c is constant on the horizon. 
The integral mass formula becomes 

~ A  (13) M = ~ (2 Ta b -  T 6  b) K a d S b  + 2 ~ 2 ~ J n  + 47z ' 
s 

where A is the area of a 2-dimensional cross section of the horizon. 
When Tab is zero, i.e. when the space outside the horizon is empty, 
this formula reduces to that found by Smarr  [7] for the Kerr  solution. 
In the Kerr  solution, 

J,, 
• -  = 2 M ( M  2 + (M 4 _ a~),/2) , (14) 

(M 4 _ j 2 ) 1 / 2  

= 2 M ( M  2 + ( M  4 _ j 2 ) 1 / 2 )  , (15) 

A = 8rc(M 2 + (M 4 - j~)l/z). (16) 

For  a Kerr  solution with a zero angular momentum,  the total mass is 
represented by the last term in equation (13). As the angular momentum 
increases, the surface gravity decreases until it is zero in the limiting 
case, 3,2 = M 4. The mass is then all represented by the rotational term 
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2~2rtJ n. The reduction of the surface gravity with angular momentum 
can be thought of as a centrifugal effect. When the angular momentum 
is near the limiting value, the horizon is, in a sense, very loosely bound 
and a small perturbation can raise a large tide [ l  1]. 

3. The Differential Formula 

In this section we shall use the integral mass formula to derive an 
expression for the difference c~M between the masses of two slightly 
different stationary axisymmetric black hole solutions. For  simplicity 
we shall consider only the case in which the matter outside the horizon 
is a perfect fluid in circular orbit around the black hole. The differential 
mass formula for rotating stars without the blackhole terms is discussed 
in [12]. A treatment including electromagnetic fields, which allows the 
matter to be an elastic solid, is given in [6]. 

A perfect fluid may be described by an energy density e which is a 
function of the particle number density n and entropy density s. The 
temperature 0, chemical potential # and pressure p are defined by 

& 
0 =  0--2' (i7) 

0e (18) 
# -  3n '  

p = p n + O s - e .  (19) 

The energy momentum tensor is 

Tab = (~ + P) GVb + P G b ,  (20) 

where v~= (Z Ub ub)- ~/2 U a is the unit vector tangent to the flow lines and 
u a = K ~ + f2K ~, where f2 is the angular velocity of the fluid. The angular 
momentum, entropy and number of particles of the fluid can be expressed 
a s  

--~. T a b R b d X a ,  

svadZa , 
and 

.[ nv"dXa respectively. 

When comparing two slightly different solutions there is a certain 
freedom in which points are chosen to correspond. We shall use this 
freedom to make the surfaces S, the event horizons, and the Killing 
vectors K a and/~a the same in the two solutions. Thus 

~ K a = ~ / ( a = 0  (21) 
and 

6 K~ = h,~b Kb , ~ I (  a ~- habt~ b , (22) 
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where h.b = 6g.b = -- g.cgba6g ~d. Then 

,5 l" = ~Sf2nI£" , (23) 

l a = hab l b + gab 0 OH ~b . (24) 

Since the event horizons are in the same position in the two solutions, 
the covariant vectors normal to them must be parallel, 

61[flbl = O, fin[an bl = 0. (25) 

Also, the Lie derivative of 61 a by l b is zero, (61.);bib+ 61fl";b = 0. Therefore 

6~c = ½(61fl" + Iabl");cn c + ~(lfl~);~bn c 

= ½(61a);b(tan b + nal b) + 6lfla;bn b 
(26) 

+ 6~-2HI~a;blan b + ~Snbla;bl, 

= ½(6l~);b(l"n b + n"l b) + 6 f2nt (~; f l .n  b . 

As 61. is proportional to l. on the horizon, (61~);bm~ b is zero. Thus 

bK = --½(6la) ;a + 6Qt_iI~a;blan b 

= __½hab;al b + 6(2n~, ,b lanb .  (27) 

TO evaluate 6M, we express the mass formula derived in the previous 
section in the form 

M = S (2T.b + -Rbba) K " d Z b + 2 O n J o +  ~ , A .  (28) 
s 

The variation of the term involving the scalar curvature, R, gives 

1 1 ca c -d 

But 
2h c ;a ~ , , =  2(K,~h~c;al re-d~,fc;a~'~ (30) [c;d]  ~ x  - -  Jtx *~c / ; d ,  

using hca;, ,K"+ haaK";~+ h,,~K";d= O. One can therefore transform the 
last term in (29) into the 2-surface integral 

t 
41r ~ (Kaht~;al - Kdh~c;"]) dS"a"  (31) 

as 

The integral over 8So~ gives - 6 M  and, by Eq. (27), the integral over ~B 

gives _ 61¢ A - 2 6 f 2 n J  n. 
4n 

The variation of the energy-momentum tensor term in (28) is 

26 ~ TabK"dZb = - 2 ~ fJb{T.bI£~dSb}  + 26 ~ p K " d Z ' .  
(32) 

+ 2 .( u~6{(e + p) ( -  UCUagcd)- 1 u~KbdZb} .  
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But e + p =  l~ n + O s, 6 p = g~ #n + 6 O s, and ua (~ { (-- blcbld gcd)- l /2 Ua} = ½ vCve hcd. 
Therefore 

2g; ~ T~b K"dXb = y TCehceKadX~ + 2 ~ QfdJ  
(33) 

+ 2.f fiadN + 2 5 96dS , 

where 6dJ = -a{TobR~d~:b} is the change in the angular momentum of 
the fluid crossing the surface element d27 b, 

,SdN = a { n ( -  u j ) -  1/2 KbdZb} 

is the change in the number of particles crossing d~ b, 

6 dS = 6 {s(-  u~u ~) - 1/2 KbdZb} 

is the change in the entropy crossing dX b, 

-~ = ( -  uou°) 1/2 t~ 

is the "red-shifted" chemical potential, and 

g = (__ Ua ua)l/2 0 

is the "red-shifted" temperature. Thus 

aM = 5 f26dJ + .f "fi,SdN + .[ gadS + Q~,SJ n + ~ 6A.  (34) 

This is the differential mass formula. 
If an infinitesimal ring is added to a black hole slowly, without 

allowing any matter or radiation to cross the event horizon, the area 
and the angular momentum of the black hole are constant and the matter 
terms in the Eq. (34) give the net energy required to add the ring. Since 
f2 n and ~c do change to first order in the mass of the ring, the change in 
MH = 2fa~Jn + ~:A/4rc must be taken into account in the integral mass 
formula of Eq. (13). 

4. The Four Laws 

In this section we shall pursue the analogy between black holes and 
thermodynamics and shall formulate four laws which correspond to and 
in some ways transcend the four laws of thermodynamics. We start with 
the most obvious analogy: 

The Second Law [1] 

The area A of the event horizon of each black hole does not decrease 
with time, i.e. 

3A_>O. 
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If two black holes coalesce, the area of the final event horizon is greater 
than the sum of the areas of the initial horizons, i.e. 

A 3 > A 1 + A2. 

This establishes the analogy between the area of the event horizon 
and entropy. The second law of black hole mechanics is slightly stronger 
than the corresponding thermodynamic law. In thermodynamics one 
can transfer entropy from one system to another, and it is required only 
that the total entropy does not decrease. However  one cannot transfer 
area from one black hole to another since black holes cannot bifurcate 
([1, 2, 3]). Thus the second law of black hole mechanics requires that the 
area of each individual black hole should not decrease. 

The First Law 

Any two neighboring stationary axisymmetric solutions con- 
taining a perfect fluid with circular flow and a central black hole are 
related by 

~M = - ~  ~A + (2n6J n + .f QfidJ + ~ -g6dN + ~ ffbdS. 

It can be seen that ~ -  is analogous to temperature in the same way 

that A is analogous to entropy. It should however be emphasized that 

~c and A are distinct from the temperature and entropy of the black hole. 
8re 

In fact the effective temperature of a black hole is absolute zero. 
One way of seeing this is to note that a black hole cannot be in equilibrium 
with black body radiation at any non-zero temperature, because no 
radiation could be emitted from the hole whereas some radiation would 
always cross the horizon into the black hole. If the wavelength of the 
radiation were very long, corresponding to a low black body temper- 
ature, the rate of absorption of radiation would be very slow, but true 
equilibrium would be possible only if there were no radiation present 
at all, i.e. if the external black body radiation temperature were zero. 
Another way of seeing that the effective temperature of a black hole is 
zero is to note that the "red shifted" effective temperature ff of any matter  
orbiting the black hole must tend to zero as the horizon is approached, 
because the time dilatation factor ( -uau, )  1/2 tends to zero on the horizon. 
The fact that the effective temperature of a black hole is zero means 
that one can in principle add entropy to a black hole without changing 
it in any way. In this sense a black hole can be said to transcend the 
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second law of thermodynamics.  In practise of course any addition of 
entropy to a black hole would cause some increase in the area of the 
event horizon. One might therefore suppose that by adding some mul- 
tiple of the area to the total entropy of all matter  outside the event horizon 
one could obtain a quantity which never decreased. However this is 
not possible since by careful management  one can arrange that the area 
increase accompanying a given addition of entropy is arbitrarily small. 
One way of doing this would be to put the entropy into two containers 
and lower them on ropes down the axis towards the north and south 
poles. As the containers approach the black hole they would distort 
the horizon. The shear or rate of distortion of the horizon would be 
proport ional  to the rate at which the containers were being lowered. 
The rate of increase of area of the horizon would be proportional  to the 
square of the shear, [2, 11], and so to the square of the rate at which 
the containers were being lowered. Thus by lowering the containers 
very slowly, one could ensure that the area increase was very small. 
When the containers reach the horizon, they would ~oe moving parallel 
to the null vector l ~ and so would not cause any area increase as they 
cross the horizon. 

In a similar way the effective chemical potential g tends  to zero on the 
horizon, which means that in principle one can also add particles to a 
black hole without changing it. In this sense a black hole transcends 
the law of conservation of baryons. 

Continuing the analogy between ~ and temperature, one has" 

The Zeroth Law 

The surface gravity, ~ of a stationary black hole is constant over the 
event horizon. 

This was proved in Section 2. Other  proofs under slightly different 
assumptions are given in [6, 2]. 

Extending the analogy even further one would postulate: 

The Third Law 

It is impossible by any procedure, no matter  how idealized, to reduce 
to zero by a finite sequence of operations. 

This law has a rather different status from the others, in that it does 
not, so far at least, have a rigorous mathematical  proof. However  there 
are strong reasons for believing in it. For  example if one tries to reduce 
the value of ~c of a Kerr  black hole by throwing in particles to increase 
the angular momentum,  one finds that the decrease in ~c per particle 
thrown in gets smaller and smaller as the mass and angular momentum 
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tend to the critical ratio J/M 2 = 1 for which tc is zero. While idealized 
accretion processes do exist for which j/M2--~ 1 with the addition of a 
finite amount  of rest mass ([13, 14]), they require an infinite divisibility 
of the matter and an infinite time. Another reason for believing the third 
law is that if one could reduce ~ to zero by a finite sequence of operations, 
then presumably one could carry the process further, thereby creating 
a naked singularity. If this were to happen there would be a breakdown 
of the assumption of asymptotic predictability which is the basis of many 
results in black hole theory, including the law that A cannot decrease. 

This work was carried out while the authors were attending the 1972 Les Houches 
Summer School on Black Holes. The authors would like to thank Larry Smarr, Bryce 
de Witt and other participants of the school for valuable discussions. 
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