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Resumen / Los agujeros negros son objetos totalmente colapsados en su campo gravitacional. Han sido estudia-
dos teóricamente durante más de cuarenta años utilizando la teoŕıa de la relatividad general. Más recientemente,
se los ha investigado en el marco de teoŕıas alternativas de la gravitación. En este art́ıculo repasaré las principales
propiedades de los agujeros negros y discutiré en forma accesible algunas controversias teóricas recientes sobre su
naturaleza.

Abstract / Black holes are fully gravitational collapsed objects. They have been studied from a theoretical
point of view during more than 40 years using the theory of General Relativity. Recently they have been also
investigated in the context of alternative theories of gravitation. In this paper I review the main properties of
black holes and I discuss, in an accesible way, some recent controversies about the nature of these objects.
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1. Introduction

Black holes are perhaps the most amazing objects
thought to exist in the Universe. Their uniqueness is re-
flected by the huge technical literature devoted to them.
As to the end of 2015 there were more than 42 000 arti-
cles published in peer reviewed journals with the words
“black hole” in the title. In comparison, there were
14 000 and 9000 titles with the words “neutron star”
and “white dwarf”, respectively. Black holes are also of-
ten depicted in the popular press, the news, and even in
cartoons and TV shows. They have invaded the popular
culture and the media, attracting a lot of attention not
only of researchers but also of the general public. This
huge interest is up to some extent justified by the pe-
culiarities of black holes and the huge impact that their
existence has upon our view of the cosmos and its phys-
ical laws. In black holes our most cherished concepts of
classical common-sense physics break down beyond re-
pair. The actual nature of black holes and some of the
problems they pose for modern physics, nevertheless, re-
main obscure for a large majority of the public, either
scientific or lay. The purpose of the following pages is to
present a short review of some basic properties of black
holes and the current controversies rised around them.
For a longer exposition the readers are referred to Frolov
& Novikov (1998) and Romero & Vila (2014).

2. Definitions

Black holes are objects that are gravitationally collapsed
and hence, are infinitely redshifted. This means that
they are causally disconnected from the rest of the Uni-
verse in the following sense: events ocurring inside the
black hole can never affect in any way events ocurring
outside. A crucial issue, then, is to provide an ade-
quate definition of the boundary between the interior

and exterior regions of the black hole. In order to give
such a definition, let us introduce first a physical system
formed by all events. An event is an occurrence of any
type. We call such system spacetime and we represent
it by a C∞-differentiable, 4-dimensional, real pseudo-
Riemannian manifold. A real 4-D manifold is a set that
can be covered completely by subsets whose elements are
in a one-to-one correspondence with subsets of R4, the
4-dimensional space of real numbers. We adopt 4 dimen-
sions because it seems enough to give 4 real numbers to
localize an event. A metric field gµν that determines the
distance between two events and is locally Minkowskian
is introduced on the manifold in accordance to Einstein’s
field equations: Rµν − 1/2gµνR = κTµν , where Rµν is
the Ricci tensor formed with second order derivatives of
the metric, R is the Ricci scalar gµνRµν , κ = 8πG/c4

is a constant, and Tµν is a second rank tensor that rep-
resents the energy-momentum of all material fields that
generate the metric field gµν(xµ) – here {xµ} is a math-
ematical coordinate system that corresponds to a physi-
cal reference frame. A given spacetime model is specified
by a triplet: ST ≡ (M, gµν , Tµν), where M is the man-
ifold, g the metric field, and T the energy-momentum
field. Since we will deal with vacuum or electro-vacuum
solutions, for simplicity, we will denote a given space-
time by (M, gµν).

Because many coordinate systems can be used to
describe black holes, it is convenient to give a definition
of a black hole that is independent of the choice of
coordinates. First, I will introduce some preliminary
useful definitions (see, for details, Hawking & Ellis
1973, Wald 1984).

Definition. A causal curve in a spacetime (M, gµν)
is a curve that is non space-like, that is, piecewise
either time-like or null (light-like).
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We say that a spacetime (M, gµν) is time-orientable
if we can define over M a smooth non-vanishing
time-like vector field.

Definition. If (M, gµν) is a time-orientable space-
time, then ∀ p ∈ M , the causal future of p, denoted
J+(p), is defined by:

J+(p) ≡ {q ∈M | ∃ a future-directed causal curve

from p to q}.
Similarly,

Definition. If (M, gµν) is a time-orientable space-
time, then ∀ p ∈M , the causal past of p, denoted J−(p),
is defined by:

J−(p) ≡ {q ∈M | ∃ a past-directed causal curve

from p to q}.
The causal future (+) and past (−) of any set S ⊂M

are given by:

J±(S) =
⋃

p∈S
J±(p). (1)

A set S is said achronal if no two points of S are time-
like related. A Cauchy surface is an achronal surface
such that every non space-like curve in M crosses it
once, and only once. A spacetime (M, gµν) is globally
hyperbolic iff it admits a space-like hypersurface S ⊂M
which is a Cauchy surface for M .

Causal relations are invariant under conformal trans-
formations of the metric. So, the spacetimes (M, gµν)
and (M, g̃ab), where g̃ab = Ω2gab, with Ω a nowhere zero
Cr function, have the same causal structure.

Let us now consider a spacetime where all null
geodesics start in a region J− and end at J +. Then,
such a spacetime, (M, gµν), is said to contain a black
hole if M is not contained in J−(J +). In other words,
there is a region from where no null geodesic can reach
the asymptotic flat? future spacetime, or, equivalently,
there is a region of M that is causally disconnected from
the global future. The black hole region, BH, of such
spacetime is BH = [M − J−(J +)], and the boundary
of BH in M , H = J−(J +)

⋂
M , is the event horizon.

Notice that a black hole is conceived as a spacetime
region, i.e. what characterises the black hole is its met-
ric and, consequently, its curvature. What is peculiar of
this spacetime region is that it is causally disconnected
from the rest of the spacetime: no events in this region
can make any influence on events outside the region.
Hence the name of the boundary, event horizon: events
inside the black hole are separated from events in the
global external future of spacetime. The events in the
black hole, nonetheless, as all events, are causally deter-
mined by past events. A black hole does not represent
a breakdown of classical causality.

?Asymptotic flatness is a property of the geometry of space-
time which means that in appropriate coordinates, the limit
of the metric at infinity approaches the metric of the flat
(Minkowskian) spacetime.

Figure 1: Carter-Penrose diagram of a Schwarzschild black
hole.

A useful representation of a black hole is given by
a Carter-Penrose diagram. This is a two-dimensional
diagram that captures the causal relations between dif-
ferent points in spacetime. It is an extension of a
Minkowski diagram where the vertical dimension rep-
resents time, and the horizontal dimension represents
space, and slanted lines at an angle of 45◦ correspond
to light rays. The biggest difference with a Minkowski
diagram (light cone) is that, locally, the metric on a
Carter-Penrose diagram is conformally equivalent?? to
the actual metric in spacetime. The conformal factor is
chosen such that the entire infinite spacetime is trans-
formed into a Carter-Penrose diagram of finite size. For
spherically symmetric spacetimes, every point in the di-
agram corresponds to a 2-sphere. In Fig. 1, I show a
Carter-Penrose diagram of a spherically symmetric vac-
uum (Schwarzschild) spacetime.

3. Metrics and properties

Exact solutions of Einstein’s field equations represent-
ing stationary black holes exist for vacuum and electro-
vacuum spacetimes. The spherically symmetric solu-
tions are the Schwarzschild and Reisner-Nordström so-
lutions, whereas the axially symmetric solutions are the
Kerr and Kerr-Newman solutions. The Kerr-Newman
metric of a charged spinning black hole is the most gen-
eral black hole solution. It was found by Ezra “Ted”
Newman and co-workers in 1965 (Newman et al., 1965),
and in the appropriate limits allows to recover the other
solutions.

The full expression of the interval in the Kerr-
Newman spacetime reads (in Boyer-Lindquist coordi-
nates):

??I remind that two geometries are conformally equivalent if
there exists a conformal transformation (an angle-preserving
transformation) that maps one geometry onto the other.
More generally, two Riemannian metrics on a manifold M
are conformally equivalent if one is obtained from the other
through multiplication by a function on M .

BAAA, 58, 2016219



Romero

ds2 = gttdt
2 + 2gtφdtdφ− gφφdφ2 − Σ∆−1dr2 (2)

−Σdθ2

gtt = c2
[
1− (2GMrc−2 − q2)Σ−1

]
(3)

gtφ = a sin2 θ Σ−1
(
2GMrc−2 − q2

)
(4)

gφφ = [(r2 + a2c−2)2 − a2c−2∆ sin2 θ]Σ−1 sin2 θ (5)

Σ ≡ r2 + a2c−2 cos2 θ (6)

∆ ≡ r2 − 2GMc−2r + a2c−2 + q2 (7)

≡ (r − routh )(r − rinnh ), (8)

where M is the black hole mass, a = J/M is the specific
angular momentum, q is related to the charge Q by

q =
GQ2

4πε0c4
,

and the outer horizon is located at

routh = GMc−2 + [(GMc−2)2 − a2c−2 − q2]1/2. (9)

There is an inner event horizon located at:

rinnh = GMc−2 − [(GMc−2)2 − a2c−2 − q2]1/2. (10)

An essential singularity occurs when gtt → ∞; this
happens if Σ = 0. This condition implies:

r2 + a2c−2 cos2 θ = 0. (11)

Such a condition is fulfilled only by r = 0 and θ = π
2 .

This translates in Cartesian coordinates to:???

x2 + y2 = a2c−2 and z = 0. (12)

The singularity is a ring of radius ac−1 on the equatorial
plane. If a = 0, then a Schwarzschild’s point-like singu-
larity is recovered. If a 6= 0 the singularity is not neces-
sarily in the future of all events at r < rinnh : this means
that the singularity can be avoided by some geodesics.

The Kerr-Newman solution is a non-vacuum solu-
tion. It shares with the Kerr and Reissner-Nordström
solutions the existence of two horizons, and as the Kerr
solution it presents an ergosphere (a region where space-
time is dragged around the black hole). At a latitude θ,
the radial coordinate for the ergosphere is:

re = GMc−2+[(GMc−2)2−a2c−2 cos2 θ−q2]1/2.(13)

As the Kerr metric for an uncharged rotating mass,
the Kerr-Newman interior solution exists mathemati-
cally but is probably not representative of the actual
metric of a physically realistic rotating black hole be-
cause of stability problems. The surface area of the
horizon is:

AKN = 4π(rout 2
h + a2c−2). (14)

The Kerr-Newman metric represents the simplest
stationary, axisymmetric, asymptotically flat solution
of Einstein’s equations in the presence of an electro-
magnetic field in four dimensions. Any Kerr-Newman
source has its rotation axis aligned with its magnetic
axis (Punsly, 1998). Thus, a Kerr-Newman source is

???The relation with Boyer-Lindquist coordinates
is z = r cos θ, x =

√
r2 + a2c−2 sin θ cosφ, y =√

r2 + a2c−2 sin θ sinφ.

Equatorial

plane

Inner

horizon

Outer

horizon

Axis

Ring

singularity

III

II

I

Figure 2: Structure of a Kerr-Newman black hole.

different from commonly observed astronomical bodies,
for which there might be a substantial angle between the
rotation axis and the magnetic moment (as observed in
pulsars). In Fig. 2, I present a sketch of the stucture of
a theoretical Kerr-Newman black hole.

4. Thermodynamics

The area of a Schwarzschild black hole is

ASchw = 4πr2Schw =
16πG2M2

c4
. (15)

In the case of a Kerr-Newman black hole,

AKN = 4π

(
GM

c2
+

1

c2

√
G2M2 −GQ2 − a2

)2

+4π
a2

c2
. (16)

Notice that expression (16) reduces to (15) for a = Q =
0.

When a black hole absorbs a mass δM , its mass in-
creases to M+δM , and hence, the area increases as well.
Since the horizon can be crossed in just one direction,
the area of a black hole can only increase. This suggests
an analogy with entropy (Bekenstein, 1973). A varia-
tion in the entropy of the black hole will be related to
the heat (δQ) absorbed through the following equation:

δS =
δQ

TBH
=
δMc2

TBH
. (17)

Particles trapped in the black hole will have a wave-
length:

λ =
~c
kT
∝ rSchw, (18)

where k is the Boltzmann constant, and the proportion-
ality requires a constant smaller than 1. Then,

ξ
~c
kT

=
2GM

c2
,

where ξ is the mentioned numerical constant. Hence,
we can associate a temperature to the black hole:
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TBH = ξ
~c3

2GkM
,

and

S =
c6

32πG2M

∫
dASchw

TBH
=

c3k

16π~Gξ
ASchw + constant.

A quantum mechanical calculation of the horizon tem-
perature in the Schwarzschild case leads to ξ = (4π)−1.
So,

TBH =
~c3

8GMk
∼= 10−7K

(
M�
M

)
. (19)

Then, we can write the entropy of the black hole as:

S =
kc3

4π~G
ASchw + constant (20)

∼ 1077
(
M

M�

)2

k JK−1. (21)

The formation of a black hole implies a huge increase
of entropy: a star has an entropy ∼ 20 orders of mag-
nitude lower than the corresponding black hole. This
tremendous increase of entropy is related to the loss of
all the structure of the original system (a collapsing star
or a cloud of gas) once the black hole is formed.

The analogy between area and entropy allows to
state a set of laws for black hole thermodynamics
(Bardeen et al., 1973):
• First law (energy conservation): dM = TBHdS +

Ω+dJ + ΦdQ+ δM . Here, Ω+ is the angular veloc-
ity, J the angular momentum, Q the electric charge,
Φ the electrostatic potential, and δM is the contri-
bution to the change in the black hole mass due to
the change in the external stationary matter distri-
bution.

• Second law (entropy never decreases): in all physi-
cal processes involving black holes the total surface
area of all the participating black holes can never
decrease.

• Third law (Nernst’s law): the temperature (surface
gravity) of a black black hole cannot be zero. Since
TBH = 0 with A 6= 0 for extremal charged and ex-
tremal Kerr black holes, these are thought to be limit
cases that cannot be reached in Nature.

• Zeroth law (thermal equilibrium): the surface grav-
ity (temperature) is constant over the event horizon
of a stationary axially symmetric black hole.

5. Quantum fields around black holes

In the current physical view, the world is a collection of
quantum fields existing in spacetime. The vacuum state
|0〉 of these fields can be excited to form a Fock basis of
the quantized field:

|1k〉 = a†k|0〉. (22)

Succesive applications of the operator a†k yield:

a†k|nk〉 = (n+ 1)1/2|(n+ 1)k〉. (23)

In Minkowski space, a preferred basis can be constructed
using the specific symmetries of this space (the Poincaré
group). Then, if Nk = a†kak is the operator number of
particles, we get

〈0|Nk|0〉 = 0, for all k. (24)

This means that the expectation value for all quantum
modes of the vacuum is zero: if there are no particles as-
sociated with the vacuum state in one reference system,
then the same is valid in all of them. In curve space-
time this is not valid any longer: general spaces do not
share the Minkowski symmetries, and hence the number
of particles is not a relativistic invariant. In particular,
the presence of a black hole horizon induces a polar-
ization of the vacuum in such a way that a detector at
infinity will measure a net flux of thermal particles:

〈0|Tµν |0〉 =
κ2

48π
, (25)

where κ = 8πG/c4, as before. The radiation has
a Planckian distribution with a temperature TBH =
κ/2πk, in agreement with 19 (see Birrell & Davies 1982
for details). Therefore, quantum field theory reveals the
mechanism hidden behind the phenomenological consid-
erations of the previos section. It is not the black hole
itself that emits radation, but the quantum fields in the
presence of an event horizon.

6. Controversies

A number of important controversies have arised from
recent research on black holes. Below I will comment on
some of them.

6.1. Singularities

The term “singularity” is often abused in the context of
general relativity. It is usual to see this term as the sub-
ject of sentences such as “the singularity is at the center
of the black hole” or “the singularity is strong”. These
expressions and many others found in the literature lead
many people to think that singularities are some kind of
physical entities where some general physical principles
such as causality are not valid any longer. This is incor-
rect. Singularities are not things or any other kind of
existents. Nay, they are features of some mathematical
models of spacetime. There are not such a thing as sin-
gularities. Rather, there are singular spacetime models
in general relativity.

A spacetime is said to be singular if the manifold M
that represents the system of all events is incomplete;
and a manifold is incomplete if it contains at least one
inextensible curve. A curve γ : [0, a) → M is inexten-
sible if there is no point p in M such that γ(s) → p as
a → s, i.e. γ has no endpoint in M . So, singularities
are defects in our modelling of spacetime with continu-
ous manifolds. And these defects are of different type
from the singularities that appear in electromagnetism
or Newtonian gravity. For example, the Newtonian po-
tential of a mass m is Gm/r. This potential diverges at
r = 0. But the location r = 0 is well defined in the the-
ory. It just happens that the magnitude of the potential

BAAA, 58, 2016221



Romero

becomes unbounded at that point. The situation in gen-
eral relativity is quite diferent. Spacetime itself ceases to
exist in a singular spacetime model. There is no location
where this happens, since the very concept of location
requires spacetime to exist. The singularity, then, has
no way to interact with the real world. Whatever hap-
pens in the pathological region of a singular spacetime
model, we cannot say within that model. It is as impos-
sible as to speak without using a language. The reason
is simple: to speak is to use a language! In a similar
way, if you do not have spacetime, you cannot predict
the evolution of physical systems using general relativ-
ity, because any prediction in this theory is a prediction
about the motion of physical systems in spacetime.

We can sum up all this saying that general relativity
is incomplete: it cannot describe completely the space-
time inside a black hole.

Now, everyone knows that there are some theorems
about gravitational collapse in general relativity that
state that even if the collapse is not symmetric, a singu-
lar spacetime results if some conditions hold (Penrose,
1965). These singularity theorems are not theorems that
imply the physical existence, under some conditions, of
spacetime singularities. Material existence cannot be
formally implied.

In general, existence theorems imply that under cer-
tain assumptions there are functions that satisfy a given
equation, or that some concepts can be formed in agree-
ment with some explicit syntactic rules. Theorems of
this kind state the possibilities of some formal system
or language. Such possibilities, although not obvious in
many occasions, are always a necessary consequence of
the assumptions of the formal system.

In the case of the singularity theorems of classical
field theories like general relativity, what is implied is
that under some assumptions the solutions of the equa-
tions of the theory are defective beyond repair. The
correct interpretation of these theorems is that they
point out the incompleteness of the theory: there are
some statements that cannot be made within the the-
ory. In this sense (and only in this sense), the theorems
are like Gödel’s famous theorems of mathematical logic
(Romero, 2012).

6.2. Information paradox

“Is information destroyed by black holes?” This is a
question often heard in the popular scientific press and
even in academic journals. The interest in this sup-
posed problem is additionally sparked by the notorious
changes of opinion of Stephen Hawking, a popular per-
sona always at the center of public attention. In 1976,
he answered by the positive (Hawking, 1976), recently
by the negative (Hawking, 2015).

Most of the discussion of the so-called information
paradox is misfocused because of a lack of understand-
ing of the concept of information. What is, exactly,
information? This word is a polysemic term. In ordi-
nary usage it designates a property of languages (the
propositional content of a signal). Therefore, there is
no “law of conservation” of the information, nor it is
true that information can never decrease. In fact, it

may disappear, as anyone who has lost a hard disk can
corroborate.

Some authors confuse “information” with “entropy”,
which is a thermodynamic concept. Others, with time
invariance of the solutions of an equation. So, accord-
ing to the level of confusion we can differentiate several
supposed paradoxes. Let us see.

• “Entropic paradox”: The entropy of black holes
decreases when they evaporate. This is supposed to
be a paradox because of, we are said, black holes
would violate the second law of thermodynamics.
The second law of thermodynamics demands only
that the total entropy of a closed system is either
maximum or increases. A black hole is not a closed
system, then there is no violation if its entropy de-
creases. A generalized second law is perfectly valid:

d(SBH + SUniverse)/dt > 0. (26)

• “Paradox of predictability”: This is another
pseudo-problem. It is a fact that we cannot predict
the state of the Universe after the evaporation of the
black hole just using general relativity and quantum
mechanics. This is, professedly, paradoxical. The
answer is trivial: of course we cannot! General
relativity is an incomplete theory as the singularity
theorems clearly show. There is no paradox, just
the need of a better description of nature.

• The paradox of the loss of unitary evolution:
This is nowadays the most amply discussed paradox.
I remind that, in order to say that a system has
unitary evolution, the final state must evolve from
the initial state and this evolution must be reversible.
Black holes seem to be objects that do not behave
in this way if they evaporate.
Let us consider a quantum system in a pure state
and let it fall into a black hole. Let us wait a certain
amount of time until the hole has evaporated enough
to return to its previous mass. First we had a pure
state and a black hole of mass M . Afterwards, we
have a thermal state and a black hole of the same
mass M . Physically, both black holes are indistin-
guishable. There is, then, a process that (appar-
ently) turns a pure state into a thermal state. But a
thermal state is a mixed state, so unitary evolution
does not occur. We cannot retrodict the initial state
from the final one and the physical laws. In technical
jargon, the black hole has performed a non unitary
transformation on the state of the system. Standard
quantum mechanics is violated.

There are several possible solutions to this problem:

• Quantum mechanics fails at the horizon. This is
a heavy hypothesis. Quantum mechanics is a very
robust theory and no one, ever, has detected any
problem with it.

• Relativity fails at the horizon. This is the favorite
option of particle physicists. What is supposed
to fail is the equivalence principle at the horizon.
The so-called “firewalls” are an example of the
proposals put forth by particuleers. A firewall is
a chaotically violent surface of highly energetic
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quantum states located close to the infinite redshift
surface of the black hole. The only way this can
happen is if the quantum state in the part of the
slice inside the black hole has no dependence on
the initial state. This is effectively a “bleaching”
of the “information”: all distinctions between the
initial states of infalling matter are expunged before
the system crosses the global event horizon. A
regular horizon implies increasing the entanglement.
Conversely, if entanglement is to decrease, then the
state at the horizon cannot be the vacuum. This
is the firewall argument in a nutshell. As a con-
sequence, the equivalence principle is no longer valid.

• Hawking radiation does not exist. This solution
suggests that there is something wrong with the
application of quantum field theory to curved
spacetime. But nobody knows what.

• Black holes do not exist. Several authors have
suggested that there is not such a thing as a black
hole in the Universe. Several alternative objects like
fuzzy balls, gravastars, boson stars, and taquionic
condensates have been proposed. These objects are
a lean medicine: they are far more complicated than
black holes and are plagued with problems of their
own, from instabilities to the invocation of unknown
fields or states of matter.

• A final option, suggested by Roger Penrose, is that,
indeed, the evolution of the quantum system is not
unitary and there is no problem. This is the “accept
the reality as it is” solution.

Whatever is going on here, it is likely that the actual
situation will become clear only when a quantum theory
of gravity be available.

6.3. Cosmological black holes

Black hole solutions as those described in Sect. 3. repre-
sent stationary regions in a static background spacetime.
The real Universe, however, is expanding. Moreover, it
seems to expand in an accelerated way. Since both the
black hole and the global spacetime itself are expand-
ing, this expansion should be taken into account in the
description of the black hole, at least on long timescales.

McVittie (1933) was the first to combine a
Schwarzschild solution with a Friedman-Lemâıtre-
Robertson-Walker (FLRW) background metric to find
the effects of the expanding Universe on a massive ob-
ject. McVittie metric is based on the following assump-
tions: 1) at large distances from the compact object the
metric is given approximately by the FLRW expression;
2) when the expansion is ignored (i.e. when the scale
factor a(t) = a0 is constant), Schwarzschild metric is
recovered; 3) the metric must be a consistent solution
to Einstein’s field equations with a perfect fluid energy-
momentum tensor, and 4) there is no radial matter in-
fall.

McVittie metric, with the assumption that the mass

of the black hole increases with the scale factor a(t) in
the form MBH(t) = M0a(t), reads (for a flat universe):

ds2 = −

{
1− [M0a(t)]

2[ra(t)]

}2

{
1 +

[M0a(t)]

2[ra(t)]

}2 dt2

+a(t)2
{

1 +
[M0a(t)]

2[ra(t)]

}4 (
dr2 + r2dΩ2

)
; (27)

whereas for the open and closed Friedmann models, the
corresponding metrics take the form:

ds2 =−

{
1− [M0a(t)]

2[ra(t)]

(
1± r2

4R2
0

)1/2
}2

{
1 +

[M0a(t)]

2[ra(t)]

(
1± r2

4R2
0

)1/2
}2 dt2+

+

{
1 +

[M0a(t)]

2[ra(t)]

(
1± r2

4R2
0

)1/2
}4

(
1± r2

4R2
0

)2

a(t)2
(
dr2 + r2dΩ2

)
.

(28)

It is not trivial to show that these metrics repre-
sent a black hole. Actually, the validity of the metrics
28 as a correct description of a compact object embed-
ded in a curve FLRW spacetime has been recently ques-
tioned (Nandra et al., 2012). In the flat metric there
are 2 horizons; one is an event horizon, and the other a
cosmological horizon. Contrary to Scharzschild metric,
however, the horizon at r = M0/2a(t) is singular, cor-
responding to a divergent pressure. The interpretation
of this singularity has been under debate for some time,
but it is clear that it corresponds to the event horizon
from which the background fluid cannot escape. Most
authors agreee on that McVittie solution is only valid
for > M0/2a(t).

So far no solution for a Kerr metric embedded in a
FLRW spacetime is known. In addition, little is known
of the properties of black hole spherically symmetric so-
lutions in evolving universes. This is an open topic that
certainly deserves further attention.

6.4. Mimickers

Black holes are characterised by horizons, which are null
surfaces of infinite redshift. This is what makes these re-
gions of spacetime “black”. In practice, however, a sur-
face of infinite redshift is almost impossible to differen-
tiate from a surface of almost infinite redshift. This fact
has been used to create models of compact objects other
than black holes, such as gravastars. Such objects have
problems of stability and their existence in the real Uni-
verse seems implausible. The problem of stability can
be circumvented if the object of extremely high redshift
is itself dynamical. One possibility are Dark Stars (e.g.
Barceló et al. 2008): ever collapsing stars that, nonethe-
less, never develop horizons. To achieve this, quantum
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effects are usually invoked. Another possibility is to ex-
plore gravitational collapse of matter with an equation
of state such that a smooth transition is allowed from a
polytropic state to a state of infinite rigidity in order to
enforce a bounce.

An equation of state of this type has been recently
proposed by Mbonye & Kazanas (2005) and used to de-
scribe a regular black hole interior. This interior, how-
ever, was demonstrated to be dynamically and thermo-
dynamically unstable by Pérez et al. (2013). Neverthe-
less, Pérez & Romero (2016) have recently shown that
a black hole can be mimicked by a bouncing system
described by the Mboyne-Kazanas equation of state if
the bounce occurs on timescales longer than the Hub-
ble time. The bounce occurs when the coasting mat-
ter reaches a regime of full rigidity, located well beyond
the nuclear density, but below the densities necessary to
produce a stellar-mass black hole.

Properties of dynamical mimickers such as Hawking
radiation remain mostly unexplored, as well as cosmo-
logical effects in their evolution.

7. The importance of black holes:
philosophical remarks

Black holes are the most extreme objects known in the
Universe. Our representations of physical laws reach
their limits in them. The strange phenomena that occur
around black holes put to the test our basic conceptions
of space, time, determinism, irreversibility, information,
and causality. It is then not surprising that the investi-
gation of black holes has philosophical impact in areas
as diverse as ontology, epistemology, and theory con-
struction. In black holes, in a very definite sense, we
can say that philosophy meets physics, and, hopefully,
experiment. Philosophers have almost paid no attention
to the problems raised by the existence of black holes in
the real world. For a notable and solitary exception see
Weingrad (1979); a recent discussion of some ontologi-
cal implications of black holes can be found in Romero
& Pérez (2014); for a review see Romero (2014).

Among other philosophically important topics, the
existence of black holes can be invoked to argue for
substantivalism (the doctrine that spacetime is a phys-
ical entity, see Romero 2015), for the existence of dis-
crete spacetime (Romero 2015), and to refute presen-
tism, the idea that only the present is real (Romero &
Pérez 2014). Many other issues remain to be studied.

8. Final comments

Black holes are the key ingredient in the mechanisms
producing the most violent phenomena in the Universe,
from gamma-ray bursts to active galactic nuclei. They
are also essential for galaxy formation and evolution.
These strange objects hide in their interior ultra com-
pact remnants of collapsed stars and gas clouds. Our
current knowledge of the laws of physics is not enough
to explain these eerie entities. Black holes offer a unique
framework where both large scale and microscopic in-
teractions interplay in different regimes of the gravita-

tional field. Research in both astrophysics and theoreti-
cal physics is necessary to shed some light upon the dark
nature of these objects.
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