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Es cosa averiguada que no se sabe nada,
y que todos son ignorantes;

y aun esto no se sabe de cierto,
que, a saberse, ya se supiera algo: sospéchase.

Quevedo

Abstract. Black holes are perhaps the most strange and fascinating
objects in the universe. Our understanding of space and time is pushed
to its limits by the extreme conditions found in these objects. They
can be used as natural laboratories to test the behavior of matter in
very strong gravitational fields. Black holes seem to play a key role in
the universe, powering a wide variety of phenomena, from X-ray binaries
to active galactic nuclei. In these lecture notes the basics of black hole
physics and astrophysics are reviewed.

1. Introduction

Strictly speaking, black holes do not exist. Moreover, holes, of any kind, do not
exist. You can talk about holes of course. For instance you can say: “there is
a hole in the wall”. You can give many details of the hole: it is big, it is round
shaped, light comes in through it. Even, perhaps, the hole could be such that
you can go through to the outside. But I am sure that you do not think that
there is a thing made out of nothingness in the wall. No. To talk about the
hole is an indirect way of talking about the wall. What really exists is the wall.
The wall is made out of bricks, atoms, protons and leptons, whatever. To say
that there is a hole in the wall is just to say that the wall has certain topology,
a topology such that not every closed curve on the surface of the wall can be
contracted to a single point. The hole is not a thing. The hole is a property of
the wall.

Let us come back to black holes. What are we talking about when we talk
about black holes?. Space-time. What is space-time?.

Space-time is the ontological sum of all events of all things.
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A thing is an individual endowed with physical properties. An event is a
change in the properties of a thing. An ontological sum is an aggregation of
things or physical properties, i.e. a physical entity or an emergent property.
An ontological sum should not be confused with a set, which is a mathematical
construct and has only mathematical (i.e. fictional) properties.

Everything that has happened, everything that happens, everything that
will happen, is just an element, a “point”, of space-time. Space-time is not a
thing, it is just the relational property of all things1.

As it happens with every physical property, we can represent space-time
with some mathematical structure, in order to describe it. We shall adopt the
following mathematical structure for space-time:

Space-time can be represented by a C∞-differentiable, 4-dimensional, real
manifold.

A real 4-D manifold is a set that can be covered completely by subsets whose
elements are in a one-to-one correspondence with subsets of �4. Each element
of the manifold represents an event. We adopt 4 dimensions because it seems
enough to give 4 real numbers to localize an event. For instance, a lightning has
beaten the top of the building, located in the 38th Av., between streets 20 and
21, at 25 m above the see level, La Plata city, at 4:35 am, local time, March 2nd,
2009 (this is my home at the time of writing). We see now why we choose a
manifold to represent space-time: we can always provide a set of 4 real numbers
for every event, and this can be done independently of the intrinsic geometry of
the manifold. If there is more than a single characterization of an event, we can
always find a transformation law between the different coordinate systems. This
is a basic property of manifolds.

Now, if we want to calculate distances between two events, we need more
structure on our manifold: we need a geometric structure. We can get this
introducing a metric tensor that allows to calculate distances. For instance,
consider an Euclidean metric tensor δμν (indices run from 0 to 3):

δμν =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (1)

Then, adopting the Einstein convention of sum, we have that the distance
ds between two arbitrarily close events is:

ds2 = δμνdx
μdxν = (dx0)2 + (dx1)2 + (dx3)2 + (dx3)2. (2)

Restricted to 3 coordinates, this is the way distances have been calculated since
Pythagoras. The world, however, seems to be a little more complicated. After the
introduction of the Special Theory of Relativity by Einstein (1905), the German
mathematician Hermann Minkowski introduced the following pseudo-Euclidean
metric which is consistent with Einstein’s theory (Minkowski 1907, 1909):

1For more details on this view see Perez-Bergliaffa et al. (1998).
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Figure 1
Figure 1. Light cone. From J-P. Luminet (1998).

ds2 = ημνdx
μdxν = (dx0)2 − (dx1)2 − (dx3)2 − (dx3)2. (3)

The Minkowski metric tensor ημν has rank 2 and trace −2. We call the
coordinates with the same sign spatial (adopting the convention x1 = x, x2 = y,
and x3 = z) and the coordinate x0 = ct is called temporal coordinate. The
constant c is introduced to make uniform the units. There is an important fact
respect to Eq. (3): contrary to what was thought by Kant and others, it is
not a necessary statement. Things might have been different. We can easily
imagine possible worlds with other metrics. This means that the metric tensor
has empirical information about the real universe.

Once we have introduced a metric tensor we can separate space-time at each
point in three regions according to ds2 < 0 (space-like region), ds2 = 0 (light-
like or null region), and ds2 > 0 (time-like region). Particles that go through
the origin can only reach time-like regions. The null surface ds2 = 0 can be
inhabited only by particles moving at the speed of light, like photons. Points in
the space-like region cannot be reached by material objects from the origin of
the light cone that can be formed at any space-time point.

The introduction of the metric allows to define the future and the past of a
given event. Once this is done, all events can be classified by the relation “earlier
than” or “later than”. The selection of “present” event - or “now” - is entirely
conventional. To be present is not an intrinsic property of any event. Rather,
it is a secondary, relational property that requires interaction with a conscious
being. The extinction of the dinosaurs will always be earlier than the beginning
of World War II. But the latter was present only to some human beings at some
physical state. The present is a property like a scent or a color. It emerges
from the interaction of self-conscious individuals with changing things and has
not existence independently of them (for more about this, see Grünbaum 1973,
Chapter X).

Let us consider the unitary vector T ν = (1, 0, 0, 0), then a vector xμ points
to the future if ημνxμT ν > 0. In the similar way, the vector points toward the
past if ημνxμT ν < 0. A light cone is shown in Figure 1.
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We define the proper time (τ) of a physical system as the time of a co-moving
system, i.e. dx = dy = dz = 0, and hence:

dτ2 =
1

c2
ds2. (4)

Since the interval is an invariant (i.e. it has the same value in all coordinate
systems), it is easy to show that:

dτ =
dt

γ
, (5)

where
γ =

1√
1− (v

c

)2 (6)

is the Lorentz factor of the system.
A basic characteristic of Minskowski space-time is that it is “flat”: all light

cones point in the same direction, i.e. the local direction of the future does
not depend on the coefficients of the metric since these are constants. More
general space-times are possible. If we want to describe gravity in the framework
of space-time, we have to introduce a pseudo-Riemannian space-time, whose
metric can be flexible, i.e. a function of the material properties (mass-energy
and momentum) of the physical systems that produce the events of space-time.

Tetrads: othogonal unit vector fields

Let us consider a scalar product

�v • �w = (vμêμ) • (wν êν) = (êμ • êν)vμwν = gμνv
μwν ,

where
êμ = lim

δxμ→0

δ�s

δxμ
,

and we have defined
êμ(x) • êν(x) = gμν(x).

Similarly,
êμ(x) • êν(x) = gμν(x).

We call êμ a coordinate basis vector or a tetrad. δ�s is an infinitesimal
displacement vector between a point P on the manifold (see Fig. 2) and a nearby
point Q whose coordinate separation is δxμ along the xμ coordinate curve. êμ is
the tangent vector to the xμ curve at P . We can write:

d�s = êμdx
μ

and then:

ds2 = d�s • d�s = (dxμêμ) • (dxν êν) = (êμ • êν)dxμdxν = gμνdx
μdxν .



Black hole astrophysics 5

At a given point P the manifold is flat, so:

gμν(P ) = ημν .

A manifold with such a property is called pseudo-Riemannian. If gμν(P ) = δμν
the manifold is called strictly Riemannian.

The basis is called orthonormal when êμ • êν = ημν at any given point P .
Notice that since the tetrads are 4-dimensional we can write:

eμa(x)e
a
ν(x) = gμν(x),

and
eμa(P )e

a
ν(P ) = ημν .

The tetrads can vary along a given world-line, but always satisfying:

eμa(τ)e
a
ν(τ) = ημν .

We can also express the scalar product �v • �w in the following ways:

�v • �w = (vμê
μ) • (wν ê

ν) = (êμ • êν)vμwν = gμνvμwν ,

�v • �w = (vμêμ) • (wν ê
ν) = (êμ • êν)vμwν = vμwνδ

ν
μ = vμwμ,

and
�v • �w = (vμê

μ) • (wν êν) = (êμ • êν)vμwν = δμν vμw
ν = vμw

μ.

By comparing these expressions for the scalar product of two vectors, we
see that

gμνw
ν = wμ,

so the quantities gμν can be used to lower and index. Similarly,

gμνwν = wμ.

We also have that

gμνw
νgμνwν = gμνg

μνwνwν = wμw
μ.

And from here it follows:
gμνgμσ = δνσ.

The tensor field gμν(x) is called the metric tensor of the manifold. Alterna-
tive, the metric of the manifold can be specified by the tetrads eaμ(x).

2. Gravitation

The key to relate space-time to gravitation is the equivalence principle introduced
by Einstein (1907):

At every space-time point in an arbitrary gravitational field it
is possible to choose a locally inertial coordinate system such that,
within a sufficiently small region of the point in question, the laws of
nature take the same form as in unaccelerated Cartesian coordinate
systems in absence of gravitation (fromulation by Weinberg 1972).
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Figure 2. Tangent flat space at a point P of a curved manifold. From
Carroll (2003).

This is equivalent to state that at every point P of the manifold that represents
space-time there is a flat tangent surface. Einstein called the idea that gravitation
vanishes in free-falling systems “the happiest thought of my life” (Pais 1982).

In order to introduce gravitation in a general space-time, we define a met-
ric tensor gμν , such that its components can be related to those of a locally
Minkowski space-time defined by ds2 = ηαβdξ

αdξβ through a general transfor-
mation:

ds2 = ηαβ
∂ξα

∂xμ
∂ξβ

∂xν
dxμdxν = gμνdx

μdxν . (7)

In the absence of gravity we can always find a global coordinate system
(ξα) for which the metric can take the form given by Eq. (3) everywhere. With
gravity, on the contrary, such a coordinate system can represent space-time only
in an infinitesimal neighborhood of a given point. This situation is represented
in Fig 2, where the tangent flat space to a point P of the manifold is shown. The
curvature of space-time means that it is not possible to find coordinates in which
gμν = ημν at all points of the manifold. However, it is always possible to represent
the event (point) P in a system such that gμν(P ) = ημν and (∂gμν/∂x

σ)P = 0.
To find the equation of motion of a free particle (i.e. only subject to gravity)

in a general space-time of metric gμν let us consider a freely falling coordinate
system ξα. In such a system:

d2ξα

ds2
= 0, (8)

where ds2 = (cdτ)2 = ηαβdξ
αdξβ. Let us consider now any other coordinate

system xμ. Then,

d

ds

(
∂ξα

∂xμ
dxμ

ds

)
= 0 (9)

∂ξα

∂xμ
d2xμ

ds2
+

∂2ξα

∂xμ∂xν
dxμ

ds

dxν

ds
= 0. (10)
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Multiplying at both sides by ∂xλ/∂ξα and using:

∂ξα

∂xμ
∂xλ

∂ξα
= δλμ, (11)

we get
d2xλ

ds2
+ Γλ

μν

dxμ

ds

dxν

ds
= 0, (12)

where Γλ
μν is the affine connection of the manifold:

Γλ
μν ≡ ∂xλ

∂ξα
∂2ξα

∂xμ∂xν
. (13)

The affine connection can be expressed in terms of derivatives of the metric
tensor (see, e.g., Weinberg 1972):

Γλ
μν =

1

2
gλα(∂μgνα + ∂νgμα − ∂αgμν). (14)

Here we use the convention: ∂νf = ∂f/∂xν and gμαgαν = δμν . Notice that
under a coordinate transformation from xμ to x

′μ the affine connection is not
transformed as a tensor, despite that the metric gμν is a tensor of second rank.

The coefficients Γλ
μν are said to define a connection on the manifold. ăWhat

are connected are the tangent spaces at different points of the manifold. It is
then possible to compare a vector in the tangent space at point P with the
vector parallel to it at another point Q. There is some degree of freedom in the
specification of the affine connection, so we demand symmetry in the last two
indices:

Γλ
μν = Γλ

νμ

or
Γλ
[μν] = 0.

In general space-times this requirement is not necessary, and a tensor can be
introduced such that:

T λ
μν = Γλ

[μν]. (15)

This tensor represents the torsion of space-time. In general relativity space-
time is always considered as torsionless, but in the so-called teleparallel theory
of gravity (e.g. Arcos and Pereira 2004) torsion represents the gravitational field
instead of curvature, which is nil.

In a pseudo-Riemannian space-time the usual partial derivative is not a
meaningful quantity since we can give it different values through different choices
of coordinates. This can be seen in the way the derivative transforms under a
coordinate change:

A′μ
,ν =

∂

∂x′ν
∂x′μ

∂xμ
Aμ =

∂x′μ

∂xμ
∂xν

∂x′ν
Aμ

,ν +
∂2x′μ

∂xμ∂xν
∂xν

∂x′ν
Aμ. (16)

We can define a covariant differentiation through the condition of parallel
transport:

Aμ;ν =
∂Aμ

∂xν
− Γλ

μνAλ. (17)
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A useful, alternative notation, is:

∇νAμ =
∂Aμ

∂xν
− Γλ

μνAλ. (18)

A covariant derivative of a vector field is a rank 2 tensor of type (1, 1). A
covariant divergence of a vector field yields a scalar field:

∇μA
μ = ∂μA

μ(x)− Γμ
αμA

α(x) = φ(x). (19)

A tangent vector satisfies V νVν ;μ= 0. If there is a vector ζμ pointing in
the direction of a symmetry of space-time, then it can be shown (e.g. Weinberg
1972):

ζμ;ν +ζν ;μ= 0, (20)

or
∇νζμ +∇μζν = 0. (21)

This equation is called Killing’s equation. A vector field ζμ satisfying such
a relation is called a Killing vector.

If there is a curve γ on the manifold, such that its tangent vector is uα =
dxα/dλ and a vector field Aα is defined in a neighborhood of γ, we can define a
derivative of Aα along γ as:

�μA
α = Aα

,βu
β − uα,βA

β = Aα
;βu

β − uα;βA
β. (22)

This derivative is a tensor, and it is usually called Lie derivative. It can be
defined for tensor of any type. A Killing vector field is such that:

�ζgμν = 0. (23)

From Eq. (12) we can recover the classical Newtonian equations if:

Γ0
i,j = 0, Γi

0,j = 0, Γi
0,0 =

∂Φ

∂xi
,

where i, j = 1, 2, 3 and Φ is the Newtonian gravitational potential. Then:

x0 = ct = cτ,

d2xi

dτ2
= − ∂Φ

∂xi
.

We see, then, that the metric represents the gravitational potential and the affine
connection the gravitational field.

The presence of gravity is indicated by the curvature of space-time. The
Riemann tensor, or curvature tensor, provides a measure of this curvature:

Rσ
μνλ = Γσ

μλ,ν − Γσ
μν,λ + Γσ

ανΓ
α
μλ − Γσ

αλΓ
α
μν . (24)

The form of the Riemann tensor for an affine-connected manifold can be
obtained through a coordinate transformation xμ → x̄μ that makes the affine
connection to vanish everywhere, i.e.

Γ̄σ
μν(x̄) = 0, ∀x̄, ρ, μ, ν. (25)
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The coordinate system x̄μ exists iff:

Γσ
μλ,ν − Γσ

μν,λ + Γσ
ανΓ

α
μλ − Γσ

αλΓ
α
μν = 0, (26)

for the affine connection Γσ
μν(x). The right hand side of Eq. (26) is the Riemann

tensor: Rσ
μνλ. In such a case the metric is flat, since its derivatives are zero. If

Rσ
μνλ > 0 the metric has a positive curvature.

The Ricci tensor is defined by:

Rμν = gλσRλμσν = Rσ
μσν . (27)

Finally, the Ricci scalar is R = gμνRμν .

3. Field equations

The key issue to determine the geometric structure of space-time, and hence
to specify the effects of gravity, is to find the law that fixes the metric once
the source of the gravitational field is given. The source of the gravitational
field is the energy-momentum tensor Tμν that represents the physical properties
of a material thing. This was Einstein’s fundamental intuition: the curvature
of space-time at any event is related to the energy-momentum content at that
event. For the simple case of a perfect fluid the energy-momentum tensor takes
the form:

Tμν = (ε+ p)uμuν − pgμν , (28)

where ε is the mass-energy density, p is the pressure, and uμ = dxμ/ds is the
4-velocity. The field equations were found by Einstein (1915) and independently
by Hilbert (1915) on November 25th and 20th, 1915, respectively2.

We can write Einstein’s physical intuition in the following form:

Kμν = κTμν , (29)

where Kμν is a rank-2 tensor related to the curvature of space-time and κ is a
constant. Since the curvature is expressed by Rμνσρ, Kμν must be constructed
from this tensor and the metric tensor gμν . The tensor Kμν has the following
properties to satisfy: i) the Newtonian limit suggests that it should contain terms
no higher than linear in the second-order of derivatives of the metric tensor (since
∇2Φ = 4πGρ); ii) since Tμν is symmetric then Kμν must be symmetric as well.
Since Rμνσρ is already linear in the second-order derivatives of the metric, the
most general form of Kμν is:

Kμν = aRμν + bRgμν + λgμν , (30)

where a, b, and λ are constants.

2Recent scholarship has arrived to the conclusion that Einstein was the first to find the equations
and that Hilbert incorporated the final form of the equations in the proof reading process, after
Einstein’s communication (Corry et al. 1997).
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Figure 3. Albert Einstein and the field equations of General Relativ-
ity for empty space.

If every term in Kμν must be linear in the second-order derivatives of gμν ,
then λ = 0. Hence:

Kμν = aRμν + bRgμν . (31)

The conservation of energy-momentum requires: T μν ;μ = 0. So,

(aRμν + bRgμν);μ = 0. (32)

Also, it happens that (Bianchi identities):

(Rμν − 1

2
Rgμν);μ = 0. (33)

From here, we get b = −a/2 and a = 1. We can then re-write the field equations
as:

(Rμν − 1

2
Rgμν) = κTμν . (34)

In order to fix κ, we must compare with the weak-field limit of these equa-
tions with the Poisson’s equations of Newtonian gravity. This requires that
κ = −8πG/c4.

The Einstein field equations can then be written in the simple form:

Rμν − 1

2
gμνR = −(8πG/c4)Tμν . (35)

This is a set of ten non-linear partial differential equations for the metric co-
efficients. In Newtonian gravity, otherwise, there is only one gravitational field
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equation. General Relativity involves numerous non-linear differential equations.
In this fact lays its complexity, and its richness.

The conservation of mass-energy and momentum can be derived from the
field equations:

T μν ;ν = 0 or ∇νT
μν = 0. (36)

Contrary to classical electrodynamics, here the field equations entail the energy-
momentum conservation and the equations of motion for free particles (i.e. for
particles moving in the gravitational field, treated here as a background pseudo-
Riemannian space-time).

Let us consider, for example, a distribution of dust (i.e. a pressureless perfect
fluid) for which the energy-momentum tensor is:

T μν = ρuμuν , (37)

with uμ the 4-velocity. Then,

T μν ;μ= (ρuμuν);μ= (ρuμ);μ u
ν + ρuμuν ;μ= 0. (38)

Contracting with uν :
c2(ρuμ);μ+(ρuμ)uνu

ν ;μ= 0, (39)
where we used uνuν = c2. Since the second term on the left is zero, we have:

(ρuμ);μ= 0. (40)

Replacing in Eq. (38), we obtain:

uμuν ;ν = 0, (41)

which is the equation of motion for the dust distribution in the gravitational
field.

Einstein equations (35) can be cast in the form:

Rμ
ν − 1

2
δμνR = −(8πG/c4)T μ

ν . (42)

Contracting by setting μ = ν we get

R = −(16πG/c4)T, (43)

where T = T μ
μ . Replacing the curvature scalar in Eqs. (35) we obtain the

alternative form:
Rμν = −(8πG/c4)(Tμν − 1

2
Tgμν). (44)

In a region of empty space, Tμν = 0 and then

Rμν = 0, (45)

i.e. the Ricci tensor vanishes. The curvature tensor, which has 20 independent
components, does not necessarily vanishes. This means that a gravitational
field can exist in empty space only if the dimensionality of space-time is 4 or
higher. For space-times with lower dimensionality, the curvature tensor vanishes
if Tμν = 0. The components of the curvature tensor that are not zero in empty
space are contained in the Weyl tensor (see Section 8. below for a definition of the
Weyl tensor). Hence, the Weyl tensor describes the curvature of empty space.
Absence of curvature (flatness) demands that both a Ricci and Weyl tensors
should be zero.
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4. The cosmological constant

The set of Einstein equations is not unique: we can add any constant multiple
of gμν to the left member of (35) and still obtain a consistent set of equations. It
is usual to denote this multiple by Λ, so the field equations can also be written
as:

Rμν − 1

2
gμνR+ Λgμν = −(8πG/c4)Tμν . (46)

Lambda is a new universal constant called, because of historical reasons, the
cosmological constant. If we consider some kind of “substance” with equation of
state given by p = −ρc2, then its energy-momentum tensor would be:

Tμν = −pgμν = ρc2gμν . (47)

Notice that the energy-momentum tensor of this substance depends only on the
space-time metric gμν , hence it describes a property of the “vacuum” itself. We
can call ρ the energy density of the vacuum field. Then, we rewrite Eq. (46) as:

Rμν − 1

2
gμνR = −(8πG/c4)(Tμν + T vac

μν ), (48)

in such a way that

ρvacc
2 =

Λc4

8πG
. (49)

There is evidence (e.g. Perlmutter et al. 1999) that the energy density of the
vacuum is different from zero. This means that Λ is small, but not zero3. The
negative pressure seems to be driving a “cosmic acceleration”.

There is a simpler interpretation of the repulsive force that produces the
accelerate expansion: there is not a dark field. The only field is gravity, repre-
sented by gμν . What is different is the law of gravitation: instead of being given
by Eqs. (35), it is expressed by Eqs. (46); gravity can be repulsive under some
circumstances.

Despite the complexity of Einstein’s field equations a large number of exact
solutions have been found. They are usually obtained imposing symmetries on
the space-time in such a way that the metric coefficients can be found. The first
and most general solution to Eqs. (35) was obtained by Karl Schwarszchild in
1916, short before he died in the Eastern Front of World War I. This solution,
as we will see, describes a non-rotating black hole of mass M .

5. Relativistic action

Let us consider a mechanical system whose configuration can be uniquely defined
by generalized coordinates qa, a = 1, 2, ..., n. The action of such a system is:

S =

∫ t2

t1
L(qa, q̇a, t)dt, (50)

3The current value is around 10−29g cm−3.
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where t is the time. The Lagrangian L is defined in terms of the kinetic energy
T of the system and the potential energy U :

L = T − U =
1

2
mgabq̇

aq̇b − U, (51)

where gab is the metric of the configuration space: ds2 = gabdq
adqb. Hamilton’s

principle states that for arbitrary variation such as:

qa(t) → q′a(t) = qa(t) + δqa(t), (52)

the variation of the action δS vanishes. Assuming that δqa(t) = 0 at the end-
points t1 and t2 of the trajectory, it can be shown that the Lagrangian must
satisfy the Euler-Lagrange equations:

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0, a = 1, 2, ..., n. (53)

These are the equations of motion of the system.
In the case of the action of a set of fields defined on some general four

dimensional space-time manifold, we can introduce a Lagrangian density of the
fields and their derivatives:

S =

∫
R
L(Φa, ∂μΦ

a, ∂μ∂νΦ
a...) d4x, (54)

where Φa is a field on the manifold, R is a region of the manifold, and d4x =
dx0dx1dx2dx3. The action should be a scalar, then we should use the element of
volume in a system xμ written in the invariant form

√−g d4x, where g = ‖gμν‖
is the determinant of the metric in that coordinate system. The corresponding
action is:

S =

∫
R
L
√−g d4x, (55)

where the Lagrangian field L is related with the Lagrangian density by:

L = L
√−g. (56)

The field equations of Φa can be derived demanding that the action (54) is
invariant under small variations in the fields:

Φa(x) → Φ′a(x) = Φa + δΦa(x). (57)

No coordinate has been changed here, just the form of the fields in a fixed
coordinate system. Assuming, for simplicity that the field is local, higher order
derivatives can be neglected. For first order derivatives we have:

∂μΦ
a → ∂μΦ

′a = ∂aμ + ∂μ(δΦ
a). (58)

Using these variations, we obtain the variation of the action S → S+ δS, where:

δS =

∫
R
δLd4x =

∫
R

[
∂L
∂Φa

δΦa +
∂L

∂(∂μΦa)
δ(∂μΦ

a)

]
d4x. (59)
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After some math (see, e.g., Hobson et al. 2007), we get:

δL
δΦa

=
∂L
∂Φa

− ∂μ

[
∂L

∂(∂μΦa)

]
= 0. (60)

These are the Euler-Lagrange equations for the local field theory defined by the
action (54).

If the field theory is General Relativity, we need to define a Lagrangian
density which is a scalar under general coordinate transformations and which
depends on the components of the metric tensor gμν , which represents the dy-
namical potential of the gravitational field. The simplest scalar that can be
constructed from the metric and its derivatives is the Ricci scalar R. The sim-
plest possible action is the so-called Einstein-Hilbert action:

SEH =

∫
R
R
√−g d4x. (61)

The Lagrangian density is L = R
√−g. Introducing a variation in the metric

gμν → gμν + δgμν , (62)

we can arrive, after significant algebra, to:

δSEH =

∫
R
(Rμν − 1

2
gμνR) δg

μν√−g d4x. (63)

By demanding that δSEH = 0 and considering that δgμν is arbitrary, we get:

Gμν ≡ Rμν − 1

2
gμνR = 0. (64)

These are the Einstein field equations in vacuum. The tensor Gμν is called the
Einstein tensor. This variational approach was used by Hilbert in November
1915 to derive the Einstein equations from simplicity and symmetry arguments.

If there are non-gravitational fields present the action will have and addi-
tional component:

S =
1

2κ
SEH + SM =

∫
R

(
1

2κ
LEH + LM

)
d4x, (65)

where SM is the non-gravitational action and κ = −8πG/c4.
If we vary the action with respect to the inverse metric we get:

1

2κ

δLEH

δgμν
+
δLM

δgμν
= 0. (66)

Since δSEH = 0,
δLEH

δgμν
=

√−gGμν . (67)

Then, if we identify the energy-momentum tensor of the non-gravitational fields
in the following way:

Tμν =
2√−g

δLM

δgμν
, (68)
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we obtain the full Einstein equations:

Gμν = −8πG

c4
Tμν .

Math note: invariant volume element

Let us calculate the N -dimensional volume element dNV in an N -dimensional
pseudo-Rimannian manifold. In an orthogonal coordinate system this volume
element is:

dNV =
√
|g11g22...gNN |dx1dx2...dxN .

In such a system the metric tensor is such that its determinant is:

‖gab‖ = g11g22...gNN ,

i.e. the product of the diagonal elements.
Using the notation adopted above for the determinant we can write:

dNV =
√
|g|dx1dx2...dxN .

It is not difficult to show that this result remains valid in an arbitrary coordinate
system (see Hobson et al. 2007).

6. The Cauchy problem

The Cauchy problem concerns the solution of a partial differential equation that
satisfies certain side conditions which are given on a hypersurface in the domain.
It is an extension of the initial value problem. In the case of the Einstein field
equations, the hypersurface is given by the condition x0/c = t. If it were possible
to obtain from the field equations an expression for ∂2gμν/∂(x0)2 everywhere at
t, then it would be possible to compute gμν and ∂gμν/∂x

0 at a time t + δt,
and repeating the process the metric could be calculated for all xμ. This is the
problem of finding the causal development of a physical system from initial data.

Let us prescribe initial data gab and gab,0 on S defined by x0/c = t. The
dynamical equations are the six equations defined by

Gi,j = −8πG

c4
T ij. (69)

When these equations are solved for the 10 second derivatives ∂2gμν/∂(x0)2,
there appears a fourfold ambiguity, i.e. four derivatives are left indeterminate.
In order to fix completely the metric it is necessary to impose four additional
conditions. These conditions are usually imposed upon the affine connection:

Γμ ≡ gαβΓμ
αβ = 0. (70)

The condition Γμ = 0 implies �2xμ = 0, so the coordinates are known as har-
monic. With such conditions it can be shown the existence, uniqueness and
stability of the solutions. But such a result is in no way general and this is an
active field of research. The fall of predictability posits a serious problem for the
space-time interior of black holes and for multiply connected space-times, as we
will see.
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7. The energy-momentum of gravitation

Taking the covariant derivative to both sides of Einstein’s equations we get, using
Bianchi identities:

(Rμν − 1

2
gμνR);μ= 0, (71)

and then T μν ;μ= 0. This means the conservation of energy and momentum of
matter and non-gravitational fields, but it is not strictly speaking a full conser-
vation law, since the energy-momentum of the gravitational field is not included.
Because of the Equivalence Principle, it is always possible to choose a coordinate
system where the gravitational field locally vanishes. Hence, its energy is zero.
Energy is the more general property of things: the potential of change. This prop-
erty, however, cannot be associated with a pure gravitational field at any point
according to General Relativity. Therefore, it is not possible to associate a ten-
sor with the energy-momentum of the gravitational field. Nonetheless, extended
regions with gravitational field have energy-momentum since it is impossible to
make the field null in all points of the region just through a coordinate change.
We can then define a quasi-tensor for the energy-momentum. Quasi-tensors are
objects that under global linear transformations behave like tensors.

We can define a quasi-tensor of energy-momentum such that:

Θμν ,ν = 0. (72)

In the absence of gravitational fields it satisfies Θμν = T μν . Hence, we can write:

Θμν =
√−g (T μν + tμν) = Λμνα,α . (73)

An essential property of tμν is that it is not a tensor, since in the superpotential
on the right side figures the normal derivative, not the covariant one. Since tμν
can be interpreted as the contribution of gravitation to the quasi-tensor Θμν , we
can expect that it should be expressed in geometric terms only, i.e. as a function
of the affine connection and the metric. Landau & Lifshitz (1962) have found an
expression for tμν that contains only first derivatives and is symmetric:

tμν =
c4

16πG
[
(
2Γσ

ρηΓ
γ
σγ − Γσ

ργΓ
γ
ησ − Γσ

ρσΓ
γ
ηγ

)
(gμρgνη − gμνgρη) +

+gμρgησ
(
Γν
ργΓ

γ
ησ + Γν

ησΓ
γ
ργ + Γν

σγΓ
γ
ρη + Γν

ρηΓ
γ
σγ

)
+

+gνρgησ
(
Γμ
ργΓ

γ
ησ + Γμ

ησΓ
γ
ργ + Γμ

σγΓ
γ
ρη + Γμ

ρηΓ
γ
σγ

)
+

+gρηgσγ
(
Γμ
ρσΓ

ν
ηγ − Γμ

ρηΓ
ν
σγ

)
]. (74)

It is possible to find in a curved space-time a coordinate system such that
tμν = 0. Similarly, an election of curvilinear coordinates in a flat space-time can
yield non-vanishing values for the components of tμν . We infer from this that
the energy of the gravitational field is a global property, not a local one. There is
energy in a region where there is a gravitational field, but in General Relativity
it makes no sense to talk about the energy of a given point of the field.
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8. Weyl tensor and the entropy of gravitation

The Weyl curvature tensor is the traceless component of the curvature (Riemann)
tensor. In other words, it is a tensor that has the same symmetries as the
Riemann curvature tensor with the extra condition that metric contraction yields
zero.

In dimensions 2 and 3 the Weyl curvature tensor vanishes identically. In
dimensions ≥ 4, the Weyl curvature is generally nonzero.

If the Weyl tensor vanishes, then there exists a coordinate system in which
the metric tensor is proportional to a constant tensor.

The Weyl tensor can be obtained from the full curvature tensor by subtract-
ing out various traces. This is most easily done by writing the Riemann tensor
as a (0, 4)-valent tensor (by contracting with the metric). The Riemann tensor
has 20 independent components, 10 of which are given by the Ricci tensor and
the remaining 10 by the Weyl tensor.

The Weyl tensor is given in components by

Cabcd = Rabcd +
2

n− 2
(ga[cRd]b − gb[cRd]a) +

2

(n− 1)(n − 2)
R ga[cgd]b, (75)

where Rabcd is the Riemann tensor, Rab is the Ricci tensor, R is the Ricci scalar
and [] refers to the antisymmetric part. In 4 dimensions the Weyl tensor is:

Cabcd = Rabcd +
1

2
(gadRcb + gbcRda − gacRdb − gbdRca) +

1

6
(gacgdb − gadgcb)R.

(76)
In addition to the symmetries of the Riemann tensor, the Weyl tensor sat-

isfies
Ca
bad ≡ 0. (77)

Two metrics that are conformally related to each other, i.e.

ḡab = Ω2gab, (78)

where Ω(x) is a non-zero differentiable function, have the same Weyl tensor:

C̄a
bcd = Ca

bcd. (79)

The absence of structure in space-time (i.e. spatial isotropy and hence
no gravitational principal null-directions) corresponds to the absence of Weyl
conformal curvature (C2 = CabcdCabcd = 0). When clumping takes place, the
structure is characterized by a non-zero Weyl curvature. In the interior of a
black hole the Weyl curvature is large and goes to infinity at the singularity.
Actually, Weyl curvature goes faster to infinity than Riemann curvature (the
first as r−3 and the second as r−3/2 for a Schwarzschild black hole). Since the
initial conditions of the Universe seem highly uniform and the primordial state
one of low-entropy, Penrose (1979) has proposed that the Weyl tensor gives a
measure of the gravitational entropy and that the Weyl curvature vanishes at
any initial singularity (this would be valid for white holes if they were to exist).
In this way, despite the fact that matter was in local equilibrium in the early
Universe, the global state was of low entropy, since the gravitational field was
highly uniform and dominated the overall entropy.
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9. Gravitational waves

Before the development of General Relativity Lorentz had speculated that “grav-
itation can be attributed to actions which do not propagate with a velocity larger
than that of the light” (Lorentz 1900). The term gravitational waves appeared
by first time in 1905 when H. Poincaré discussed the extension of Lorentz invari-
ance to gravitation (Poincaré 1905, see Pais 1982 for further details). The idea
that a perturbation in the source of the gravitational field can result in a wave
that would manifest as a moving disturbance in the metric field was developed
by Einstein in 1916, shortly after the final formulation of the field equations
(Einstein 1916). Then, in 1918, Einstein presented the quadrupole formula for
the energy loss of a mechanical system (Einstein 1918).

Einstein’s approach was based on the weak-field approximation of the metric
field:

gμν = ημν + hμν , (80)

where ημν is the Minkowski flat metric and |hμν | << 1 is a small perturbation to
the background metric. Since hμν is small, all products that involves it and its
derivatives can be neglected. And because of the metric is almost flat all indices
can be lowered or raised through ημν and ημν instead of gμν and gμν . We can
then write:

gμν = ημν − hμν . (81)

With this, we can compute the affine connection:

Γμ
νσ =

1

2
ημβ(hσβ,ν + hνβ,σ − hνσ,β) =

1

2
(hμσ,ν + hμν,σ − h ,μ

νσ ). (82)

Here, we denote ημβhνσ,β by h ,μ
νσ . Introducing h = hμμ = ημνhμν , we can write

the Ricci tensor and curvature scalar as:

Rμν = Γα
μα,ν − Γα

μν,α =
1

2
(h,μν − hαν,μα − hαμ,να + hαμν,α), (83)

and
R ≡ gμνRμν = ημνRμν = hα,α − hαβ,αβ. (84)

Then, the field equations (35) can be cast in the following way:

h̄αμν,α + (ημν h̄
αβ
,αβ − h̄αν,μα − h̄αμ,να) = 2kTμν , (85)

where
h̄μν ≡ hμν − 1

2
hημν . (86)

We can make further simplifications through a gauge transformation. A
gauge transformation is a small change of coordinates

x′μ ≡ xμ + ξμ(xα), (87)
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where the ξα are of the same order of smallness as the perturbations of the
metric. The matrix Λμ

ν ≡ ∂x′μ/∂xν is given by:

Λμ
ν = δμν + ξμ,ν . (88)

Under gauge transformations:

h̄′μν = h̄μν − ξμ,ν − ξν,μ + ημνξα,α. (89)

The gauge transformation can be chosen in such a way that:

h̄μα,α = 0. (90)

Then, the field equations result simplified to:

h̄αμν,α = 2κTμν . (91)

The imposition of this gauge condition is analogous to what is done in
electromagnetism with the introduction of the Lorentz gauge condition Aμ

,μ = 0
where Aμ is the electromagnetic 4-potential. A gauge transformation Aμ →
Aμ − ψ,μ preserves the Lorentz gauge condition iff ψμ

,μ = 0. In the gravitational
case, we have ξμα,α = 0.

Introducing the d’Alembertian:

�2 = ημν∂μ∂ν =
1

c2
∂2

∂t2
−∇2, (92)

we get:

�2h̄μν = 2κT μν , (93)

if h̄μν,ν = 0.
The gauge condition can be expressed as:

�2ξμ = 0. (94)

Reminding the definition of κ we can write the wave equations of the gravitational
field, insofar the amplitudes are small, as:

�2h̄μν = −16πG

c4
T μν . (95)

In the absence of matter and non-gravitational fields, these equations be-
come:

�2h̄μν = 0. (96)

The simplest solution to Eq. (96) is:

h̄μν = �[Aμν exp (ikαx
α)], (97)
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where Aμν is the amplitude matrix of a plane wave that propagates with direction
kμ = ημαkα and � indicates that just the real part of the expression should be
considered. The 4-vector kμ is null and satisfies:

Aμνkν = 0. (98)

Since ¯hμν is symmetric the amplitude matrix has ten independent components.
Equation (98) can be used to reduce this number to six. The gauge condition
allows a further reduction, so finally we have only two independent components.
Einstein realized of this in 1918. These two components characterize two different
possible polarization states for the gravitational waves. In the so-called traceless
and transverse gauge –TT– we can introduce two linear polarization matrices
defined as:

eμν1 =

⎛⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞⎟⎟⎠ , (99)

and

eμν2 =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ , (100)

in such a way that the general amplitude matrix is:

Aμν = αeμν1 + βeμν2 , (101)

with α and β complex constants.
The general solution of Eq. (95) is:

h̄μν(x0, �x) =
κ

2π

∫
T μν(x0 − |�x− �x′| , �x′)

|�x− �x′| dV ′. (102)

In this integral we have considered only the effects of sources in the past of the
space-time point (x0, �x). The integral extends over the space-time region formed
by the intersection the past half of the null cone at the field point with the world
tube of the source. If the source is small compared to the wavelength of the
gravitational radiation we can approximate (102) by:

h̄μν(ct, �x) =
4G

c4r

∫
T μν(ct− r, �x′)dV ′. (103)

This approximation is valid in the far zone, where r > l, with l the typical size
of the source. In the case of a slowly moving source T 00 ≈ ρc2, with ρ the proper
energy density. Then, the expression for h̄μν can be written as:

h̄ij(ct, �x) ≈ 2G

c4r

d2

dt2

∫
ρxixjdV |ret. (104)

The notation indicates that the integral is evaluated at the retarded time t−r/c.
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The gravitational power of source with moment of inertia I and angular
velocity ω is:

dE

dt
=

32GI2ω6

5c5
. (105)

This formula is obtained considering the energy-momentum carried by the grav-
itational wave, which is quadratic in hμν . In order to derive it, the weak field
approximation must be abandoned. See Landau and Lifshitz (1962).

10. Alternative theories of gravitation

10.1. Scalar-tensor gravity

Perhaps the most important alternative theory of gravitation is the Brans-Dicke
theory of scalar-tensor gravity (Brans & Dicke 1961). The original motivation
for this theory was to implement the idea of Mach that the phenomenon of
inertia was due to the acceleration of a given system respect to the general mass
distribution of the universe. The masses of the different fundamental particles
would not be basic intrinsic properties but a relational property originated in
the interaction with some cosmic field. We can express this in the form:

mi(x
μ) = λiφ(x

μ).

Since the masses of the different particles can be measured only through the
gravitational acceleration Gm/r2, the gravitational constant G should be related
to the average value of some cosmic scalar field φ, which is coupled with the mass
density of the universe.

The simplest general covariant equation for a scalar field produced by matter
is:

�2φ = 4πλ(TM)μμ, (106)

where �2 = φ;μ ;μ is, again, the invariant d’Alembertian, λ is a coupling constant,
and (TM)μν is the energy-momentum of everything but gravitation. The matter
and non-gravitational fields generate the cosmic scalar field φ. This field is
normalized such that:

〈φ〉 = 1

G
. (107)

The scalar field, as anything else, also generates gravitation, so the Einstein field
equations are re-written as:

Rμν − 1

2
gμνR = − 8π

c4φ

(
TM
μν + T φ

μν

)
. (108)

Here, T φ
μν is the energy momentum tensor of the scalar field φ. Its explicit form

is rather complicated (see Weinberg 1972, p. 159). Because of historical reasons
the parameter λ is written as:

λ =
2

3 + 2ω
.
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In the limit ω → ∞, λ→ 0 and T φ
μν vanishes, and hence the Brans-Dicke theory

reduces to Einstein’s.
One of the most interesting features of Brans-Dicke theory is that G varies

with time because it is determined by the scalar field φ. A variation of G would
affect the orbits of planets, the stellar evolution, and many other astrophysical
phenomena. Experiments can constrain ω to ω > 500. Hence, Einstein theory
seems to be correct, at least at low energies.

10.2. Gravity with large extra dimensions

The so-called hierarchy problem is the difficulty to explain why the characteristic
energy scale of gravity, the Planck energy: MPc

2 ∼ 1019 GeV4, is 16 orders
of magnitude larger than the electro-weak scale, Me−wc

2 ∼ 1 TeV. A possible
solution was presented in 1998 by Arkani-Hamed et al., with the introduction of
gravity with large extra dimensions (LEDs). The idea of extra-dimensions was,
however, no new in physics. It was originally introduced by Kaluza (1921) with
the aim of unifying gravitation and electromagnetism. In a different context,
Nordstrøm (1914) also discussed the possibility of a fifth dimension.

Kaluza’s fundamental insight was to write the action as:

S =
1

16πĜ

∫
R
R̂
√−ĝ d4xdy, (109)

instead of in the form given by expression (65). In Kaluza’s action y is the coor-
dinate of an extra dimension and the hats denote 5-dimensional (5-D) quantities.
The interval results:

ds2 = ĝμνdx
μdxν , (110)

with μ, ν running from 0 to 4, being x4 = y the extra dimension. Since the
extra dimension should have no effect over the gravitation Kaluza imposed the
condition:

∂ĝμν
∂y

= 0. (111)

Since gravitation manifests through the derivatives of the metric the condition
(111) implies that the extra dimension does not affect the predictions of general
relativity. If we write the metric as:

ĝμν = φ−1/3
(
gμν + φAμAν φAμ

φAν φ

)
. (112)

Then, the action becomes

S =
1

16πG

∫
R

(
R− 1

4
φFabF

ab − 1

6φ2∂aφ
∂aφ

)√−ĝ d4x, (113)

4The Planck mass is MP =
√

h̄c/G = 2.17644(11) × 10−5 g. The Planck mass is the mass of
the Planck particle, a hypothetical minuscule black hole whose Schwarzschild radius equals the
Planck length (lP =

√
h̄G/c3 = 1.616?252(81) × 10−33 cm).
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Figure 4. Compactified extra dimensions Kaluza-Klein and ADD
braneworld theories. Adapted from Whisker (2006).

where Fab = ∂aAb − ∂bAa and

G =
Ĝ∫
dy
.

The action (113) describes 4-D gravity along with electromagnetism. The
price paid for this unification was the introduction of a scalar field φ called the
dilaton (which was fixed by Kaluza φ = 1) and an extra fifth dimension which
is not observed.

Klein (1926) suggested that the fifth dimension was not observable because
it is compactified on a circle. This compactification can be achieved identifying
y with y + 2πR. The quantity R is the size of the extra dimension. Such a size
should be extremely small in order not to be detected in experiments. The only
natural length of the theory is the Planck length: R ≈ lP ∼ 10−35 m.

Unfortunately, the Kaluza-Klein theory is not consistent with other observed
features of particle physics as described by the Standard Model. This shortcom-
ing is removed in the mentioned LED model by Arkani-Hamed et at. (1998),
called ADD braneworld model. The model postulates n flat, compact extra di-
mensions of size R, but the Standard Model fields are confined to a 4-D brane,
with only gravity propagating in the bulk (see Fig. 4). The effective potential
for gravity behaves as5:

V (r) ≈ m1m2

M2+n
f

1

rn+1
, r � R, (114)

5Notice that G = M−2
P h̄c or G = M−2

P in units of h̄c = 1.
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V (r) ≈ m1m2

M2+n
f

1

Rnr
, r � R, (115)

whereMf is the fundamental mass scale of gravity in the full (4+n)-D space-time.
Hence, in the brane the effective 4-D Planck scale is given by:

M2
P =M2+n

f Rn. (116)

In this way the fundamental scaleMf can be much lower than the Planck mass. If
the fundamental scale is comparable to the electroweak scale, Mfc

2 ∼Me−wc
2 ∼

1 TeV, then we have that n ≥ 2.
Randall and Sundrum (1999) suggested that the bulk geometry might be

curved and the brane could have a tension. Hence, the brane becomes a gravi-
tating object, interacting dynamically with the bulk. A Randall-Sundrum (RS)
universe consists of two branes of torsion σ1 and σ2 bounding a slice of an anti-
de Sitter space6. The two branes are separated by a distance L and the fifth
dimension y is periodic with period 2L. The bulk Einstein equations read:

Rab − 1

2
Rgab = Λ5gab, (117)

where the bulk cosmological constant Λ5 can be expressed in terms of the cur-
vature length l as:

Λ5 =
6

l2
. (118)

The metric is:
ds2 = a2(y)ημνdx

μdxν + dy2. (119)

Using the previous expressions, we can write the metric as:

ds2 = e−2|y|/lημνdxμdxν + dy2. (120)

The term e−2|y|/l is called the warp factor. The effective Planck mass becomes:

M2
P = e2L/lM3

f l. (121)

According to the ratio L/l, the effective Planck mass can change. If we wish to
have Mfc

2 ∼ 1 TeV, then we need L/l ∼ 50 in order to generate the observed
Planck mass Mfc

2 ∼ 1019 GeV.
Other RS universes consist of a single, positive tension brane immersed in

an infinite (non-compact) extra dimension. The corresponding metric remains
the same:

ds2 = e−2|y|/lημνdxμdxν + dy2.

The 5-D graviton propagates through the bulk, but only the zero (massless)
mode moves on the brane (for details see Maartens 2004).

6An anti-de Sitter space-time has a metric that is a maximally symmetric vacuum solution of
Einstein’s field equations with an attractive cosmological constant (corresponding to a negative
vacuum energy density and positive pressure). This space-time has a constant negative scalar
curvature.
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10.3. f(R)-Gravity

In f(R) gravity, the Lagrangian of the Einstein-Hilbert action:

S[g] =

∫
1

2κ
R
√−g d4x (122)

is generalized to

S[g] =

∫
1

2κ
f(R)

√−g d4x, (123)

where g is the determinant of the metric tensor g ≡ |gμν | and f(R) is some
function of the scalar (Ricci) curvature.

The field equations are obtained by varying with respect to the metric. The
variation of the determinant is:

δ
√−g = −1

2

√−ggμνδgμν .

The Ricci scalar is defined as

R = gμνRμν .

Therefore, its variation with respect to the inverse metric gμν is given by

δR = Rμνδg
μν + gμνδRμν

= Rμνδg
μν + gμν(∇ρδΓ

ρ
νμ −∇νδΓ

ρ
ρμ) (124)

Since δΓλ
μν is actually the difference of two connections, it should transform as

a tensor. Therefore, it can be written as

δΓλ
μν =

1

2
gλa (∇μδgaν +∇νδgaμ −∇aδgμν) ,

and substituting in the equation above:

δR = Rμνδg
μν + gμν�δg

μν −∇μ∇νδg
μν .

The variation in the action reads:

δS[g] =
1

2κ

∫ (
δf(R)

√−g + f(R)δ
√−g) d4x

=
1

2κ

∫ (
F (R)δR

√−g − 1

2

√−ggμνδgμνf(R)
)

d4x

=
1

2κ

∫ √−g
(
F (R)(Rμνδg

μν + gμν�δg
μν −∇μ∇νδg

μν)− 1

2
gμνδg

μνf(R)

)
d4x,

where F (R) = ∂f(R)
∂R . Doing integration by parts on the second and third terms

we get:

δS[g] =
1

2κ

∫ √−gδgμν
(
F (R)Rμν − 1

2
gμνf(R) + [gμν�−∇μ∇ν ]F (R)

)
d4x.
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By demanding that the action remains invariant under variations of the
metric, i.e. δS[g] = 0, we obtain the field equations:

F (R)Rμν − 1

2
f(R)gμν + [gμν�−∇μ∇ν ]F (R) = κTμν , (125)

where Tμν is the energy-momentum tensor defined as

Tμν = − 2√−g
δ(
√−gLm)

δgμν
,

and Lm is the matter Lagrangian. If F (R) = 1, i.e. f(R) = R we recover
Einstein’s theory.

11. What is a star?

The idea that stars are self-gravitating gaseous bodies was introduced in th XIX
Century by Lane, Kelvin and Helmholtz. They suggested that stars should be
understood in terms of the equation of hydrostatic equilibrium:

dP (r)

dr
= −GM(r)ρ(r)

r2
, (126)

where the pressure P is given by

P =
ρkT

μmp
. (127)

Here, k is Boltzmann’s constant, μ is the mean molecular weight, T the temper-
ature, ρ the mass density, and mp the mass of the proton. Kelvin and Helmholtz
suggested that the source of heat was due to the gravitational contraction. How-
ever, if the luminosity of a star like the Sun is taken into account, the total
energy available would be released in 107 yr, which is in contradiction with the
geological evidence that can be found on Earth. Eddington made two fundamen-
tal contributions to the theory of stellar structure proposing i) that the source
of energy was thermonuclear reactions and ii) that the outward pressure of ra-
diation should be included in Eq. (126). Then, the basic equations for stellar
equilibrium become (Eddington 1926):

d

dr

[
ρkT

μmp
+

1

3
aT 4

]
= −GM(r)ρ(r)

r2
, (128)

dPrad(r)

dr
= −

(
L(r)

4πr2c

)
1

l
, (129)

dL(r)

dr
= 4πr2ερ, (130)

where l is the mean free path of the photons, L the luminosity, and ε the energy
generated per gram of material per unit time.
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Once the nuclear power of the star is exhausted, the contribution from the
radiation pressure decreases dramatically when the temperature diminishes. The
star then contracts until a new pressure helps to balance gravity attraction: the
degeneracy pressure of the electrons. The equation of state for a degenerate gas
of electrons is:

Prel = Kρ4/3. (131)

Then, using Eq. (126),

M4/3

r5
∝ GM2

r5
. (132)

Since the radius cancels out, this relations can be satisfied by a unique mass:

M = 0.197

[(
hc

G

)3 1

m2
p

]
1

μ2e
= 1.4 M�, (133)

where μe is the mean molecular weight of the electrons. The result implies that
a completely degenerated star has this and only this mass. This limit was found
by Chandrasekhar (1931) and is known as the Chandrasekhar limit.

In 1939 Chandrasekhar conjectured that massive stars could develop a de-
generate core. If the degenerate core attains sufficiently high densities the pro-
tons and electrons will combine to form neutrons. “This would cause a sudden
diminution of pressure resulting in the collapse of the star to the neutron core
giving rise to an enormous liberation of gravitational energy. This may be the
origin of the supernova phenomenon.” (Chandrasekhar 1939). An implication
of this prediction is that the masses of neutron stars (objects supported by the
degeneracy pressure of nucleons) should be close to 1.4 M�, the maximum mass
for white dwarfs. Not long before, Baade and Zwicky commented: “With all
reserve we advance the view that supernovae represent the transitions from or-
dinary stars into neutron stars which in their final stages consist of extremely
closely packed neutrons”. In this single paper Baade and Zwicky not only in-
vented neutron stars and provided a theory for supernova explosions, but also
proposed the origin of cosmic rays in these explosions (Baade & Zwicky 1934).

In the 1930s, neutron stars were not taken as a serious physical possibility.
Oppenheimer & Volkoff (1939) concluded that if the neutron core was massive
enough, then “either the Fermi equation of state must fail at very high densi-
ties, or the star will continue to contract indefinitely never reaching equilibrium”.
In a subsequent paper Oppenheimer & Snyder (1939) chose between these two
possibilities: “when all thermonuclear sources of energy are exhausted a suffi-
ciently heavy star will collapse. This contraction will continue indefinitely till
the radius of the star approaches asymptotically its gravitational radius. Light
from the surface of the star will be progressively reddened and can escape over a
progressively narrower range of angles till eventually the star tends to close itself
off from any communication with a distant observer”. What we now understand
for a black hole was then conceived. The scientific community paid no attention
to these results, and Oppenheimer and many other scientists turned their efforts
to win a war.
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Black stars: an historical note

It is usual in textbooks to credit for the idea of black holes to John Michell and
Pierre-Simon Laplace, in the XVIII Century. The idea of a body so massive that
even light could not escape was put forward by geologist Rev. John Michell in
a letter written to Henry Cavendish in 1783 to the Royal Society: “If the semi-
diameter of a sphere of the same density as the Sun were to exceed that of the
Sun in the proportion of 500 to 1, a body falling from an infinite height toward
it would have acquired at its surface greater velocity than that of light, and
consequently supposing light to be attracted by the same force in proportion to
its inertia, with other bodies, all light emitted from such a body would be made
to return toward it by its own proper gravity.” (Michell 1783).

In 1796, the mathematician Pierre-Simon Laplace promoted the same idea
in the first and second editions of his book Exposition du système du Monde
(it was removed from later editions). Such “dark stars” were largely ignored in
the nineteenth century, since light was then thought to be a massless wave and
therefore not influenced by gravity. Unlike the modern black hole concept, the
object behind the horizon is assumed to be stable against collapse. Moreover, no
equation of state was adopted neither by Michell nor Laplace. Hence, their dark
stars where Newtonian objects, infinitely rigid, and they have nothing to do with
the nature of space and time, which were for the absolute concepts. Nonetheless,
they could calculate correctly the size of such objects form the simple devise of
equating the potential and escape energy from a body of mass M :

1

2
mv2 =

GMm

r2
. (134)

Just setting v = c and assuming the gravitational and the inertial mass are the
same, we get:

rblack star =

√
2GM

c2
. (135)

12. Schwarzschild black holes

The first exact solution of Einstein field equations was found by Karl Schwarzschild
in 1916. This solution describes the geometry of space-time outside a spherically
symmetric matter distribution.

The most general spherically symmetric metric is:

ds2 = α(r, t)dt2 − β(r, t)dr2 − γ(r, t)dΩ2 − δ(r, t)drdt, (136)

where dΩ2 = dθ2 + sin2 θdφ2. We are using spherical polar coordinates. The
metric (136) is invariant under rotations (isotropic).

The invariance group of general relativity is formed by the group of general
transformations of coordinates of the form x′μ = fμ(x). This yields 4 degrees
of freedom, two of which have been used when adopting spherical coordinates
(the transformations that do not break the central symmetry are: r′ = f1(r, t)
and t′ = f2(r, t)). With the two available degrees of freedom we can freely
choose two metric coefficients, whereas the other two are determined by Einstein
equations. Some possibilities are:
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• Standard gauge.

ds2 = c2A(r, t)dt2 −B(r, t)dr2 − r2dΩ2.

• Synchronous gauge.

ds2 = c2dt2 − F 2(r, t)dr2 −R2(r, t)dΩ2.

• Isotropic gauge.

ds2 = c2H2(r, t)dt2 −K2(r, t)
[
dr2 + r2(r, t)dΩ2

]
.

• Co-moving gauge.

ds2 = c2W 2(r, t)dt2 − U(r, t)dr2 − V (r, t)dΩ2.

Adopting the standard gauge and a static configuration (no dependence of
the metric coefficients on t), we can get equations for the coefficients A and B
of the standard metric:

ds2 = c2A(r)dt2 −B(r)dr2 − r2dΩ2. (137)

Since we are interested in the solution outside the spherical mass distribution,
we only need to require the Ricci tensor to vanish:

Rμν = 0.

According to the definition of the curvature tensor and the Ricci tensor, we have:

Rμν = ∂νΓ
σ
μσ − ∂σΓ

σ
μν + Γρ

μσΓ
σ
ρν − Γρ

μνΓ
σ
ρσ = 0. (138)

If we remember that the affine connection depends on the metric as

Γσ
μν =

1

2
gρσ(∂νgρμ + ∂μgρν − ∂ρgμν),

we see that we have to solve a set of differential equations for the components of
the metric gμν .

The metric coefficients are:

g00 = c2A(r),

g11 = −B(r),

g22 = −r2,
g33 = −r2 sin2 θ,
g00 = 1/A(r),

g11 = −1/B(r),

g22 = −1/r2,

g33 = −1/r2 sin2 θ.
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Then, only nine of the 40 independent connection coefficients are different
from zero. They are:

Γ1
01 = A′/(2A),

Γ1
22 = −r/B,

Γ2
33 = − sin θ cos θ,

Γ1
00 = A′/(2B),

Γ1
33 = −(r sin2 /B),

Γ3
13 = 1/r,

Γ1
11 = B′/(2B),

Γ2
12 = 1/r,

Γ3
23 = cot θ, .

Replacing in the expression for Rμν :

R00 = −A
′′

2B
+
A′

4B

(
A′

A
+
B′

B

)
− A′

rB
,

R11 =
A′′

2A
− A′

4A

(
A′

A
+
B′

B

)
− B′

rB
,

R22 =
1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
,

R33 = R22 sin
2 θ.

The Einstein field equations for the region of empty space then become:

R00 = R11 = R22 = 0

(the fourth equation has no additional information). Multiplying the first equa-
tion by B/A and adding the result to the second equation, we get:

A′B +AB′ = 0,

from which AB = constant. We can write then B = αA−1. Going to the third
equation and replacing B we obtain: A+ rA′ = α, or:

d(rA)

dr
= α.

The solution of this equation is:

A(r) = α

(
1 +

k

r

)
,

with k another integration constant. For B we get:

B =

(
1 +

k

r

)−1

.
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If now we consider the Newtonian limit:

A(r)

c2
= 1 +

2Φ

c2
,

with Φ the Newtonian gravitational potential: Φ = −GM/r, we can conclude
that

k = −2GM

c2

and
α = c2.

Therefore, the Schwarzschild solution for a static mass M can be written in
spherical coordinates (t, r, θ, φ) as:

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (139)

As mentioned, this solution corresponds to the vacuum region exterior to the
spherical object of mass M . Inside the object, space-time will depend on the
peculiarities of the physical object.

The metric given by Eq. (139) has some interesting properties. Let’s assume
that the mass M is concentrated at r = 0. There seems to be two singularities
at which the metric diverges: one at r = 0 and the other at

rSchw =
2GM

c2
. (140)

rSchw is know as the Schwarzschild radius. If the object of massM is macroscopic,
then rSchw is inside it, and the solution does not apply. For instance, for the Sun
rSchw ∼ 3 km. However, for a point mass, the Schwarzschild radius is in the
vacuum region and space-time has the structure given by (139). In general, we
can write:

rSchw ∼ 3

(
M

M�

)
km.

It is easy to see that strange things occur close to rSchw. For instance, for
the proper time we get:

dτ =

(
1− 2GM

rc2

)1/2

dt, (141)

or

dt =

(
1− 2GM

rc2

)−1/2

dτ, (142)

When r −→ ∞ both times agree, so t is interpreted as the proper time
measure from an infinite distance. As the system with proper time τ approaches
to rSchw, dt tends to infinity according to Eq. (142). The object never reaches
the Schwarszchild surface when seen by an infinitely distant observer. The closer
the object is to the Schwarzschild radius, the slower it moves for the external
observer.
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A direct consequence of the difference introduced by gravity in the local
time respect to the time at infinity is that the radiation that escapes from a
given r > rSchw will be redshifted when received by a distant and static observer.
Since the frequency (and hence the energy) of the photon depend of the time
interval, we can write, from Eq. (142):

λ∞ =

(
1− 2GM

rc2

)−1/2

λ. (143)

Since the redshift is:
z =

λ∞ − λ

λ
, (144)

then

1 + z =

(
1− 2GM

rc2

)−1/2

, (145)

and we see that when r −→ rSchw the redshift becomes infinite. This means
that a photon needs infinite energy to escape from inside the region determined
by rSchw. Events that occur at r < rSchw are disconnected from the rest of the
universe. Hence, we call the surface determined by r = rSchw an event horizon.
Whatever crosses the event horizon will never return. This is the origin of the
expression “black hole”, introduced by John A. Wheeler in the mid 1960s. The
black hole is the region of space-time inside the event horizon. We can see what
happens with the light cones as an event is closer to the horizon of a Schwarzschild
black hole in Figure 5. The shape of the cones can be calculated from the metric
(139) imposing the null condition ds2 = 0. Then,

dr

dt
= ±

(
1− 2GM

r

)
, (146)

where we made c = 1. Notice that when r → ∞, dr/dt → ±1, as in Minkowski
space-time. When r → 2GM , dr/dt → 0, and light moves along the surface
r = 2GM . For r < 2GM , the sign of the derivative is inverted. The inward
region of r = 2GM is time-like for any physical system that has crossed the
boundary surface.

What happens to an object when it crosses the event horizon?. According
to Eq. (139), there is a singularity at r = rSchw. However, the metric coefficients
can be made regular by a change of coordinates. For instance we can consider
Eddington-Finkelstein coordinates. Let us define a new radial coordinate r∗ such
that radial null rays satisfy d(ct±r∗) = 0. Using Eq. (139) it can be shown that:

r∗ = r +
2GM

c2
log

∣∣∣∣∣r − 2GM/c2

2GM/c2

∣∣∣∣∣ .
Then, we introduce:

v = ct+ r∗.

The new coordinate v can be used as a time coordinate replacing t in Eq. (139).
This yields:

ds2 =

(
1− 2GM

rc2

)
(c2dt2 − dr2∗)− r2dΩ2
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Figure 5. Space-time diagram in Schwarzschild coordinates showing
the light cones of events at different distances of the event horizon (units
c = 1). Adapted form Carroll (2003).
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Figure 6. Space-time diagram in Eddington-Finkelstein coordinates
showing the light cones close to and inside a black hole. Here, r =
2M = rSchw is the Schwarzschild radius where the event horizon is
located (units G = c = 1). Adapted form Townsend (1997).

or
ds2 =

(
1− 2GM

rc2

)
dv2 − 2drdv − r2dΩ2, (147)

where
dΩ2 = dθ2 + sin2 θdφ2.

Notice that in Eq. (147) the metric is non-singular at r = 2GM/c2. The
only real singularity is at r = 0, since there the Riemann tensor diverges. In
order to plot the space-time in a (t, r)-plane, we can introduce a new time
coordinate t∗ = v− r. From the metric (147) or from Fig. 6 we see that the line
r = rSchw, θ =constant, and φ = constant is a null ray, and hence, the surface at
r = rSchw is a null surface. This null surface is an event horizon because inside
r = rSchw all cones have r = 0 in their future (see Figure 6). The object in r = 0
is the source of the gravitational field and is called the singularity. We will say
more about it in Sect. 24. For the moment, we only remark that everything that
crosses the event horizon will end at the singularity. This is the inescapable fate.
There is no way to avoid it: in the future of every event inside the event horizon
is the singularity. There is no escape, no hope, no freedom, inside the black hole.
There is just the singularity, whatever such a thing might be.

We see now that the name “black hole” is not strictly correct for space-time
regions isolated by event horizons. There is no hole to other place. What falls
into the black hole, goes to the singularity. The singularity increases its mass
and energy, and then the event horizon grows. This would not happen if what
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Figure 7. Embedding space-time diagram in Eddington-Finkelstein
coordinates showing the light cones close of events at different dis-
tances from a Scharzschild black hole. From: www.faculty.iu-
bremen.de/.../image030.gif.

falls into the hole were able to pass through, like through a hole in the wall. A
black hole is more like a space-time precipice, deep, deadly, and with something
unknown at the bottom. A graphic depiction with an embedding diagram of a
Schwarzschild black hole is shown in Figure 7. An embedding is an immersion
of a given manifold into a manifold of lower dimensionality that preserves the
metric properties.

13. A General definition of black hole

We shall now provide a general definition of a black hole, independently of the
coordinate system adopted in he description of space-time. First, we shall intro-
duce some useful definitions (e.g. Hawking & Ellis 1973, Wald 1984).

Definition. A causal curve in a space-time (M, gμν) is a curve that is non
space-like, that is, piecewise either time-like or null (light-like).

We say that a given space-time (M, gμν) is time-orientable if we can define
over M a smooth non-vanishing time-like vector field.

Definition. If (M, gμν) is a time-orientable space-time, then ∀p ∈ M , the
causal future of p, denoted J+(p), is defined by:
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J+(p) ≡ {q ∈M |∃ a future− directed causal curve from p to q} . (148)

Similarly,

Definition. If (M, gμν) is a time-orientable space-time, then ∀p ∈ M , the
causal past of p, denoted J−(p), is defined by:

J−(p) ≡ {q ∈M |∃ a past− directed causal curve from p to q} . (149)

Particle horizons occur whenever a particular system never gets to be influ-
enced by the whole space-time. If a particle crosses the horizon, it will not exert
any further action upon the system respect to which the horizon is defined.

Definition. For a causal curve γ the associated future (past) particle hori-
zon is defined as the boundary of the region from which the causal curves can
reach some point on γ.

Finding the particle horizons (if one exists at all) requires a knowledge of
the global space-time geometry.

Let us now consider a space-time where all null geodesics that start in a
region J − end at J +. Then, such a space-time, (M, gμν) is said to contain a
black hole if M is not contained in J−(J +). In other words, there is a region
from where no null geodesic can reach the asymptotic flat7 future space-time, or,
equivalently, there is a region of M that is causally disconnected from the global
future. The black hole region, BH, of such space-time is BH = [M − J−(J +)],
and the boundary of BH in M , H = J−(J +)

⋂
M , is the event horizon.

14. Birkoff’s theorem

If we consider the isotropic but not static line element,

ds2 = c2A(r, t)dt2 −B(r, t)dr2 − r2dΩ2, (150)

and substitute into the Einstein empty-space field equations Rμν = 0 to obtain
the functions A(r, t) and B(r, t), the result would be exactly the same:

A(r, t) = A(r) =

(
1− 2GM

rc2

)
,

and

B(r, t) = B(r) =

(
1− 2GM

rc2

)−1

.

7Asymptotic flatness is the property of a geometry of space-time which means that in appropriate
coordinates, the limit of the metric at infinity approaches the metric of the flat (Minkowskian)
space-time.
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This result is general and known as the Birkoff’s theorem:

The space-time geometry outside a general spherical symmetry matter dis-
tribution is the Schwarzschild geometry.

Birkoff’s theorem implies that strictly radial motions do not perturb the
space-time metric. In particular, a pulsating star, if the pulsations are strictly
radial, does not produce gravitational waves.

The converse of Birkoff’s theorem is not true, i.e.,

If the region of space-time is described by the metric given by expression
(139), then the matter distribution that is the source of the metric does not need
to be spherically symmetric.

15. Orbits

Orbits around a Schwarzschild black hole can be easily calculated using the
metric and the relevant symmetries (see. e.g. Raine and Thomas 2005). Let
us call kμ a vector in the direction of a given symmetry (i.e. kμ is a Killing
vector). A static situation is symmetric in the time direction, hence we can
write: kμ = (1, 0, 0, 0). The 4-velocity of a particle with trajectory xμ = xμ(τ)
is uμ = dxμ/dτ . Then, since u0 = E/c, where E is the energy, we have:

gμνk
μuν = g00k

0u0 = g00u
0 = η00

E

c
=
E

c
= constant. (151)

If the particle moves along a geodesic in a Schwarzschild space-time, we obtain
from Eq. (151):

c

(
1− 2GM

c2r

)
dt

dτ
=
E

c
. (152)

Similarly, for the symmetry in the azimuthal angle φ we have kμ = (0, 0, 0, 1),
in such a way that:

gμνk
μuν = g33k

3u3 = g33u
3 = −L = constant. (153)

In the Schwarzschild metric we find, then,

r2
dφ

dτ
= L = constant. (154)

If now we divide the Schwarzschild interval (139) by c2dτ2:

1 =

(
1− 2GM

c2r

)(
dt

dτ

)2

− c−2
(
1− 2GM

c2r

)−1 (dr
dτ

)2

− c−2r2
(
dφ

dτ

)2

, (155)

and using the conservation equations (152) and (154) we obtain:(
dr

dτ

)2

=
E2

c2
−
(
c2 +

L2

r2

)(
1− 2GM

c2r

)
. (156)
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If we express energy in units of m0c
2 and introduce an effective potential Veff ,(

dr

dτ

)2

=
E2

c2
− V 2

eff . (157)

For circular orbits of a massive particle we have the conditions

dr

dτ
= 0, and

d2r

dτ2
= 0.

The orbits are possible only at the turning points of the effective potential:

Veff =

√(
c2 +

L2

r2

)(
1− 2rg

r

)
, (158)

where L is the angular momentum in units of m0c and rg = GM/c2 is the
gravitational radius. Then,

r =
L2

2crg
± 1

2

√
L4

c2r2g
− 12L2. (159)

The effective potential is shown in Figure 8 for different values of the angular
momentum.

For L2 > 12c2r2g there are two solutions. The negative sign corresponds to
a maximum of the potential and is unstable, and the positive sign corresponds
to a minimum, which is stable. At L2 = 12c2r2g there is a single stable orbit. It
is the innermost marginally stable orbit, and it occurs at r = 6rg = 3rSchw. The
specific angular momentum of a particle in a circular orbit at r is:

L = c

(
rgr

1− 3rg/r

)1/2

.

Its energy (units of m0c
2) is:

E =

(
1− 2rg

r

)(
1− 3rg

r

)−1/2

.

The proper and observer’s periods are:

τ =
2π

c

(
r3

rg

)1/2 (
1− 3rg

r

)1/2

and

T =
2π

c

(
r3

rg

)1/2

.

Notice that when r −→ 3rg both L and E tend to infinity, so only massless
particles can orbit at such a radius.
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Figure 8. General relativistic effective potential plotted for several
values of angular momentum. Copyright (C) 2000,2001,2002 Free Soft-
ware Foundation, Inc.
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The local velocity at r of an object falling from rest to the black hole is (e.g.
Raine and Thomas 2005):

vloc =
proper distance

proper time
=

dr

(1− 2GM/c2r) dt
,

hence, using the expression for dr/dt from the metric (139):

dr

dt
= −c

(
2GM

c2r

)1/2 (
1− 2GM

c2r

)
, (160)

we have,

vloc =

(
2rg
r

)1/2

(in units of c). (161)

Then, the differential acceleration the object will experience along an element dr
is8:

dg =
2rg
r3
c2 dr. (162)

The tidal acceleration on a body of finite size Δr is simply (2rg/r
3)c2 Δr. This

acceleration and the corresponding force becomes infinite at the singularity. As
the object falls into the black hole, tidal forces act to tear it apart. This painful
process is known as “spaghettification”. The process can be significant long before
crossing the event horizon, depending on the mass of the black hole.

The energy of a particle in the innermost stable orbit can be obtained from
the above equation for the energy setting r = 6rg. This yields (unites of m0c

2):

E =

(
1− 2rg

6rg

)(
1− 3rg

6rg

)−1/2

=
2

3

√
2.

Since a particle at rest at infinity has E = 1, then the energy that the particle
should release to fall into the black hole is 1− (2/3)

√
2 = 0.057. This means 5.7

% of its rest mass energy, significantly higher than the energy release that can
be achieved through nuclear fusion.

An interesting question we can ask is what is the gravitational acceleration
at the event horizon as seen by an observer from infinity. The acceleration relative
to a hovering frame system of a freely falling object at rest at r is (Raine and
Thomas 2005):

gr = −c2
(
GM/c2

r2

)(
1− 2GM/c2

r

)−1/2

.

So, the energy spent to move the object a distance dl will be dEr = mgrdl. The
energy expended respect to a frame at infinity is dE∞ = mg∞dl. Because of the
conservation of energy, both quantities should be related by a redshift factor:

Er

E∞
=

gr
g∞

=

(
1− 2GM/c2

r

)−1/2

.

8Notice that dvloc/dτ = (dvloc/dr)(dr/dτ ) = (dvloc/dr)vloc = rgc
2/r2.
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Hence, using the expression for gr we get:

g∞ = c2
GM/c2

r2
. (163)

Notice that for an observer at r, gr −→ ∞ when r −→ rSchw. However, from
infinity the required force to hold the object hovering at the horizon is:

mg∞ = c2
GmM/c2

r2Schw
=

mc4

4GM
.

This is the surface gravity of the black hole.

Radial motion of photons

For photons we have that ds2 = 0. The radial motion, then, satisfies:(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 = 0. (164)

From here,
dr

dt
= ±c

(
1− 2GM

rc2

)
. (165)

Integrating, we have:

ct = r +
2GM

c2
ln

∣∣∣∣∣ rc22GM
− 1

∣∣∣∣∣ + constant outgoing photons, (166)

ct = −r − 2GM

c2
ln

∣∣∣∣∣ rc22GM
− 1

∣∣∣∣∣+ constant incoming photons. (167)

Notice that in a (ct, r)-diagram the photons have worldlines with slopes
±1 as r → ∞, indicating that space-time is asymptotically flat. As the events
that generate the photons approach to r = rSchw, the slopes tend to ±∞. This
means that the light cones become more and more thin for events close to the
event horizon. At r = rSchw the photons cannot escape and they move along the
horizon (see Fig. 5). An observer in the infinity will never detect them.

Circular motion of photons

In this case, fixing θ =constant due to the symmetry, we have that photons will
move in a circle of r =constant and ds2 = 0. Then, from (139), we have:(

1− 2GM

rc2

)
c2dt2 − r2dφ2 = 0. (168)

This means that

φ̇ =
c

r

√(
1− 2GM

rc2

)
= constant.
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The circular velocity is:

vcirc =
rφ̇√
g00

=
Ωr

(1− 2GM/c2r)1/2
. (169)

Setting vcirc = c for photons and using Ω = (GM/r3)1/2, we get that the only
possible radius for a circular photon orbit is:

rph =
3GM

c2
. (170)

For a compact object of 1 M�, r ≈ 4.5 km, in comparison with the Schwarzschild
radius of 3 km. Photons moving at this distance form the “photosphere” of the
black hole. The orbit, however, is unstable, as it can be seen from the effective
potential:

Veff =
L2
ph

r2

(
1− 2rg

r

)
. (171)

Notice that the four-acceleration for circular motion is: aμ = uμuν ;
ν . The

radial component in the Schawrzschild metric is:

ar =
GM/r2 − Ω2r

1− 2GM/c2r − Ω2r2/c2
. (172)

The circular motion along a geodesic line corresponds to the case ar = 0 (free
motion). This gives from Eq. (172) the usual expression for the Keplerian
angular velocity

ΩK =

(
GM

r3

)1/2

,

already used in deriving rph. In general, however, the angular velocity can have
any value determined by the metric and can be quite different from the corre-
sponding Keplerian value. In general:

v =
rΩK

(1− 2GM/c2r)1/2
=

(
GM

r

)1/2 (
1− 2GM

c2r

)−1/2

. (173)

From this latter equation and the fact that v ≤ c it can be concluded that pure
Keplerian motion is only possible for r ≥ 1.5rSchw. At r ≤ 1.5rSchw any massive
particle will find its mass increased by special relativistic effects in such a way
that the gravitational attraction will outweigh any centrifugal force.

Gravitational capture

A particle coming from infinity is captured if its trajectory ends in the black hole.
The angular momentum of a non-relativistic particle with velocity v∞ at infinity
is L = mv∞b, where b is an impact parameter. The condition L/mcrSchw = 2
defines bcr, non−rel = 2rSchw(c/v∞). Then, the capture cross section is:

σnon−rel = πb2cr = 4π
c2r2Schw
v2∞

. (174)
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For an ultra-relativistic particle, bcr = 3
√
3rSchw/2, and then

σrel = πb2cr =
27

4
πr2Schw. (175)

16. Other coordinate systems

Other coordinates can be introduced to study additional properties of black holes.
We refer the reader to the books of Frolov and Novikov (1998) and Raine and
Thomas (2005) for further details. Here we shall only introduce the Kruskal-
Szekeres coordinates. These coordinates have the advantage that they cover the
entire space-time manifold of the maximally extended Schwarzschild solution
and are well-behaved everywhere outside the physical singularity. They allow to
remove the non-physical singularity at r = rSchw and provide new insights on
the interior solution, on which we will return later.

Let us consider the following coordinate transformation:

u =

(
r

rSchw
− 1

)1/2

e
r

2rSchw cosh

(
ct

2rSchw

)
,

v =

(
r

rSchw
− 1

)1/2

e
r

2rSchw sinh

(
ct

2rSchw

)
, (176)

if r > rSchw,

and

u =

(
1− r

rSchw

)1/2

e
r

2rSchw sinh

(
ct

2rSchw

)
,

v =

(
1− r

rSchw

)1/2

e
r

2rSchw cosh

(
ct

2rSchw

)
, (177)

if r < rSchw.

The line element in the Kruskal-Szekeres coordinates is completely regular,
except at r = 0:

ds2 =
4r3Schw
r

e
r

rSchw

(
dv2 − du2

)
− r2dΩ2. (178)

The curves at r = constant are hyperbolic and satisfy:

u2 − v2 =

(
r

rSchw
− 1

)1/2

e
r

rSchw , (179)

whereas the curves at t = constant are straight lines that pass through the origin:
u

v
= tanh

ct

2rSchw
, r < rSchw,

u

v
= coth

ct

2rSchw
, r > rSchw. (180)
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Figure 9. The Schwarzschild metric in Kruskal-Szekeres coordinates
(c = 1).

In Figure 9 we show the Schwarzschild space-time in Kruskal-Szekeres co-
ordinates. Each hyperbola represents a set of events of constant radius in
Schwarzschild coordinates. A radial worldline of a photon in this diagram (ds =
0) is represented by a straight line forming an angle of ±45◦with the u axis. A
time-like trajectory has always a slope larger than that of 45◦; and a space-like
one, a smaller slope. A particle falling into the black hole crosses the line at 45◦
and reaches the future singularity at r = 0. For an external observer this occurs
in an infinite time. The Kruskal-Szekeres coordinates have the useful feature
that outgoing null geodesics are given by u = constant, whereas ingoing null
geodesics are given by v = constant. Furthermore, the (future and past) event
horizon(s) are given by the equation uv = 0, and the curvature singularity is
given by the equation uv = 1.

A closely related diagram is the so-called Penrose or Penrose-Carter dia-
gram. This is a two-dimensional diagram that captures the causal relations
between different points in space-time. It is an extension of a Minkowski dia-
gram where the vertical dimension represents time, and the horizontal dimension
represents space, and slanted lines at an angle of 45◦ correspond to light rays.
The biggest difference with a Minkowski diagram (light cone) is that, locally,
the metric on a Penrose diagram is conformally equivalent9 to the actual met-

9Two geometries are conformally equivalent if there exists a conformal transformation (an angle-
preserving transformation) that maps one geometry to the other one. More generally, two
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Figure 10. Penrose diagram of a Minkowskian space-time.

ric in space-time. The conformal factor is chosen such that the entire infinite
space-time is transformed into a Penrose diagram of finite size. For spherically
symmetric space-times, every point in the diagram corresponds to a 2-sphere. In
Figure 10 we show a Penrose diagram of a Minkowskian space-time.

This type of diagrams can be applied to Schwarzschild black holes. The
result is shown in Figure 11. The trajectory represents a particle that goes from
some point in our universe into the black hole, ending in the singularity. Notice
that there is a mirror extension, also present in the Kruskal-Szekeres diagram,
representing a white hole and a parallel, but inaccessible universe. A white hole
presents a naked singularity. These type of extensions of solutions of Einstein’s
field equations will be discussed later.

Now, we turn to axially symmetric (rotating) solutions of the field equations.

Riemannian metrics on a manifold M are conformally equivalent if one is obtained from the
other through multiplication by a function on M .
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Figure 11. Penrose diagram of a Schwarzschild black hole.

17. Kerr black holes

A Schwarzschild black hole does not rotate. The solution of the field equations
(35) for a rotating body of mass M and angular momentum per unit mass a was
found by Roy Kerr (1963):

ds2 = gttdt
2 + 2gtφdtdφ− gφφdφ

2 − ΣΔ−1dr2 − Σdθ2 (181)
gtt = (c2 − 2GMrΣ−1) (182)
gtφ = 2GMac−2Σ−1r sin2 θ (183)
gφφ = [(r2 + a2c−2)2 − a2c−2Δsin2 θ]Σ−1 sin2 θ (184)
Σ ≡ r2 + a2c−2 cos2 θ (185)
Δ ≡ r2 − 2GMc−2r + a2c−2. (186)

This is the Kerr metric in Boyer-Lindquist coordinates (t, r, θ, φ), which reduces
to Schwarzschild metric for a = 0. In Boyer-Lindquist coordinates the metric
is approximately Lorentzian at infinity (i.e. we have a Minkowski space-time in
the usual coordinates of Special Relativity).

Note that the element gtφ no longer vanishes. Even at infinity this element
remains (hence we wrote approximately Lorentzian above). The Kerr parameter
ac−1 has dimensions of length. The larger the ratio of this scale to GMc−2 (the
spin parameter a∗ ≡ ac/GM), the more aspherical the metric. Schwarzschild’s
black hole is the special case of Kerr’s for a = 0. Notice that, with the adopted
conventions, the angular momentum J is related to the parameter a by:

J =Ma. (187)
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Figure 12. Left: A rotating black hole and the Penrose process.
Adapted from J-P. Luminet (1998). Right: Sketch of the interior of
a Kerr black hole.

Just as the Schwarzschild solution is the unique static vacuum solution of
Eqs. (35) (a result called Israel’s theorem), the Kerr metric is the unique sta-
tionary axisymmetric vacuum solution (Carter-Robinson theorem).

The horizon, the surface which cannot be crossed outward, is determined by
the condition grr → ∞ (Δ = 0). It lies at r = rh where

rh ≡ GMc−2 + [(GMc−2)2 − a2c−2]1/2. (188)

Indeed, the track r = rh, θ = constant with dφ/dτ = a(r2h + a2)−1 dt/dτ has
dτ = 0 (it represents a photon circling azimuthaly on the horizon, as opposed
to hovering at it). Hence the surface r = rh is tangent to the local light cone.
Because of the square root in Eq. (188), the horizon is well defined only for
a∗ = ac/GM ≤ 1. An extreme (i.e. maximally rotating) Kerr black hole has a
spin parameter a∗ = 1. Notice that for (GMc−2)2 − a2c−2 > 0 we have actually
two horizons. The second, the inner horizon, is located at:

rinnh ≡ GMc−2 − [(GMc−2)2 − a2c−2]1/2. (189)

This horizon is not seen by an external observer, but it hides the singularity to
any observer that has already crossed rh and is separated from the rest of the
universe. For a = 0, rinnh = 0 and rh = rSchw. The case (GMc−2)2 − a2c−2 < 0
corresponds to no horizons and it is thought to be unphysical.

A study of the orbits around a Kerr black hole is beyond the limits of
the present text (the reader is referred to Frolov and Novikov 1998), but we
will mention several interesting features. One is that if a particle initially falls
radially with no angular momentum from infinity to the black hole, it gains
angular motion during the infall. The angular velocity as seen from a distant
observer is:

Ω(r, θ) =
dφ

dt
=

(2GM/c2)ar

(r2 + a2c−2)2 − a2c−2Δsin2 θ
. (190)
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Notice that the particle will acquire angular velocity in the direction of the spin
of the black hole. As the black hole is approached, the particle will find an
increasing tendency to get carried away in the same sense in which the black
hole is rotating. To keep the particle stationary respect the distant stars, it will
be necessary to apply a force against this tendency. The closer the particle will
be to the black hole, the stronger the force. At a point re it becomes impossible
to counteract the rotational sweeping force. The particle is in a kind of space-
time maelstrom. The surface determined by re is the static limit: from there
in, you cannot avoid to rotate. Space-time is rotating here in such a way that
you cannot do anything in order to not co-rotate. You can still escape from the
black hole, since the outer event horizon has not been crossed, but rotation is
inescapable. The region between the static limit and the event horizon is called
the ergosphere. The ergosphere is not spherical but its shape changes with the
latitude θ. It can be determined through the condition gtt = 0. If we consider a
stationary particle, r = constant, θ = constant, and φ = constant. Then:

c2 = gtt

(
dt

dτ

)2

. (191)

When gtt ≤ 0 this condition cannot be fulfilled, and hence a massive particle
cannot be stationary inside the surface defined by gtt = 0. For photons, since
ds = cdτ = 0, the condition is satisfied at the surface. Solving gtt = 0 we obtain
the shape of the ergosphere:

re =
GM

c2
+

1

c2

(
G2M2 − a2c2 cos2 θ

)1/2
. (192)

The static limit lies outside the horizon except at the poles where both
surfaces coincide. The phenomenon of “frame dragging” ’ is common to all axially
symmetric metrics with dtφ �= 0.

Roger Penrose (1969) suggested that a projectile thrown from outside into
the ergosphere begins to rotate acquiring more rotational energy than it originally
had. Then the projectile can break up into two pieces, one of which will fall into
the black hole, whereas the other can go out of the ergosphere. The piece coming
out will then have more energy than the original projectile. In this way, we can
extract energy from a rotating black hole. In Fig. 12 we illustrate the situation
and show the static limit, the ergosphere and the outer/inner horizons of a Kerr
black hole.

The innermost marginally stable circular orbit rms around a extreme rotat-
ing black hole (ac−1 = GM/c2) is given by (Raine and Thomas 2005):(

rms

GM/c2

)2

− 6

(
rms

GM/c2

)
± 8

(
rms

GM/c2

)1/2

− 3 = 0. (193)

For the + sign this is satisfied by rms = GM/c2, whereas for the − sign the
solution is rms = 9GM/c2. The first case corresponds to a co-rotating particle
and the second one to a counter-rotating particle. The energy of the co-rotating
particle in the innermost orbit is 1/

√
3 (units of mc2). The binding energy of a

particle in an orbit is the difference between the orbital energy and its energy
at infinity. This means a binding energy of 42% of the rest energy at infinity!.
For the counter-rotating particle, the binding energy is 3.8 %, smaller than for
a Schwazschild black hole.
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Pseudo-Newtonian potentials for black holes

The full effective general relativistic potential for particle orbits around a Kerr
black hole is quite complex. Instead, pseudo-Newtonian potentials are used. The
first of such potentials, derived by Bohdam Paczyński and used by first time by
Paczyński & Wiita (1980), for a non-rotating black hole with mass M , is:

Φ = − GM

r − 2rg
, (194)

where as before rg = GM/c2 is the gravitational radius. With this potential one
can use Newtonian theory and obtain the same behavior of the Keplerian circular
orbits of free particles as in the exact theory: orbits with r < 9rg are unstable,
and orbits with r < 6rg are unbound. However, velocities of material particles
obtained with the potential (194) are not accurate, since special relativistic effects
are not included (Abramowicz et al. 1996). The velocity vp−N calculated with
the pseudo-Newtonian potential should be replaced by the corrected velocity
vcorrp−N such that

vp−N = vcorrp−N γ
corr
p−N, γcorrp−N =

1√
1−

(
vcorrp−N

c

)2
. (195)

This re-scaling works amazingly well (see Abramowicz et al. 1996) for compar-
isons with the actual velocities. The agreement with General Relativity is better
than 5%.

For the Kerr black hole, a pseudo-Newtonian potential was found by Se-
merák & Karas (1999). It can be found in the expression (19) of their paper.
However, the use of this potential is almost as complicated as dealing with the
full effective potential of the Kerr metric in General Relativity.

18. Other black holes

18.1. Reissner-Nordstrøm black holes

The Reissner-Nordstrøm metric is a spherically symmetric solution of Eqs. (35).
However, it is not a vacuum solution, since the source has an electric charge Q,
and hence there is an electromagnetic field. The energy-momentum tensor of
this field is:

Tμν = −μ−1
0 (FμρFνρ − 1

4
gμνFρσF

ρσ), (196)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field strength tensor and Aμ is
the electromagnetic 4-potential. Outside the charged object the 4-current jμ is
zero, so the Maxwell equations are:

Fμν ;μ = 0, (197)
Fμν ;σ +Fσμ;ν +Fνσ;μ = 0. (198)

The Einstein and Maxwell equations are coupled since Fμν enters into the grav-
itational field equations through the energy-momentum tensor and the metric
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gμν enters into the electromagnetic equations through the covariant derivative.
Because of the symmetry constraints we can write:

[Aμ] =

(
ϕ(r)

c2
, a(r), 0, 0

)
, (199)

where ϕ(r) is the electrostatic potential, and a(r) is the radial component of the
3-vector potential as r −→ ∞.

The solution for the metric is given by

ds2 = Δc2dt2 −Δ−1dr2 − r2dΩ2 , (200)

where

Δ = 1− 2GM/c2

r
+
q2

r2
. (201)

In this expression, M is once again interpreted as the mass of the hole and

q =
GQ2

4πε0c4
(202)

is related to the total electric charge Q.
The metric has a coordinate singularity at Δ = 0, in such a way that:

r± = rg ± (r2g − q2)1/2. (203)

Here, rg = GM/c2 is the gravitational radius. For rg = q, we have an extreme
Reissner-Nordstrøm black hole with a unique horizon at r = rg. Notice that a
Reissner-Nordstrøm black hole can be more compact than a Scharzschild black
hole of the same mass. For the case r2g > q2, both r± are real and there are
two horizons as in the Kerr solution. Finally, in the case r2g < q2 both r±
are imaginary there is no coordinate singularities, no horizon hides the intrinsic
singularity at r = 0. It is thought, however, that naked singularities do not exist
in nature (see Section 24. below).

18.2. Kerr-Newman black holes

The Kerr-Newman metric of a charged spinning black hole is the most general
black hole solution. It was found by Ezra “Ted” Newman in 1965 (Newman et
al. 1965). This metric can be obtained from the Kerr metric (181) in Boyer-
Lindquist coordinates by the replacement:

2GM

c2
r −→ 2GM

c2
r − a2c−2 − q2,

where q is related to the charge Q by Eq. (202).
The full expression reads:

ds2 = gttdt
2 + 2gtφdtdφ− gφφdφ

2 − ΣΔ−1dr2 − Σdθ2 (204)
gtt = (c2 − 2GMrΣ−2) (205)
gtφ = 2GMac−2Σ−1r sin2 θ (206)
gφφ = [(r2 + a2c−2)2 − a2c−2Δsin2 θ]Σ−1 sin2 θ (207)
Σ ≡ r2 + a2c−2 cos2 θ (208)
Δ ≡ r2 − 2GMc−2r + a2c−2 + q2 ≡ (r − routh )(r − rinnh ), (209)
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where all the symbols have the same meaning as in the Kerr metric and the outer
horizon is located at:

routh = GMc−2 + [(GMc−2)2 − a2c−2 − q2]1/2. (210)

The inner horizon is located at:

rinnh = GMc−2 − [(GMc−2)2 − a2c−2 − q2]1/2. (211)

The Kerr-Newman solution is a non-vacuum solution, as the Reissner-Nordstrøm
is. It shares with Kerr and Reissner-Nordstrøm solutions the existence of two
horizons, and as the Kerr solution it presents an ergosphere. At a latitude θ, the
radial coordinate for the ergosphere is:

re = GMc−2 − [(GMc−2)2 − a2c−2 sin2 θ − q2]1/2. (212)

Like the Kerr metric for an uncharged rotating mass, the Kerr-Newman
interior solution exists mathematically but is probably not representative of the
actual metric of a physically realistic rotating black hole due to stability issues.
The surface area of the horizon is:

A = 4π(rout 2h + a2c−2). (213)

The Kerr-Newman metric represents the simplest stationary, axisymmetric,
asymptotically flat solution of Einstein’s equations in the presence of an electro-
magnetic field in four dimensions. It is sometimes referred to as an “electrovac-
cum” solution of Einstein’s equations. Any Kerr-Newman source has its rotation
axis aligned with its magnetic axis (Punsly 1998a). Thus, a Kerr-Newman source
is different from commonly observed astronomical bodies, for which there is a
substantial angle between the rotation axis and the magnetic moment.

Since the electric field cannot remain static in the ergosphere, a magnetic
field is generated as seen by an observer outside the static limit. This is illustrated
in Figure 13.

Pekeris & Frankowski (1987) have calculated the interior electromagnetic
field of the Kerr-Newman source, i.e., the ring singularity. The electric and
magnetic fields are shown in Figures 14 and 15, in a (λ, z)-plane, with λ =

(x2 + y2)1/2. The general features of the magnetic field are that at distances
much larger than ac−1 it resembles closely a dipole field, with a dipolar magnetic
moment μd = Qac−1. On the disc of radius ac−1 the z-component of the field
vanishes, in contrast with the interior of Minkowskian ring-current models. The
electric field for a positive charge distribution is attractive for positive charges
toward the interior disc. At the ring there is a charge singularity and at large
distances the field corresponds to that of a point like charge Q.

Charged black holes might be a natural result from charge separation during
the gravitational collapse of a star. It is thought that an astrophysical charged
object would discharge quickly by accretion of charges of opposite sign. However,
there remains the possibility that the charge separation could lead to a configu-
ration where the black hole has a charge and a superconducting ring around it
would have the same but opposite charge, in such a way the whole system seen
from infinity is neutral. In such a case a Kerr-Newman black hole might survive
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Figure 13. The electric and magnetic field lines of a Kerr-Newman
black hole. Adapted from Punsly (2001) and Hanni & Ruffini (1973).
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Figure 14. Magnetic field of a Kerr-Newman source. See text for
units. From Pekeris & Frankowski (1987).

Figure 15. Electric field of a Kerr-Newman source. See text for units.
From Pekeris & Frankowski (1987).
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Figure 16. Charged and rotating black hole magnetosphere. The
black hole has charge +Q whereas the current ring circulating around
it has opposite charge. The figure shows (units G = c = 1) the region of
closed lines determined by the light cylinder, the open lines that drive a
magneto-hydrodynamical wind, and vacuum region in between. From
Punsly (1998a).

for some time, depending on the environment. For further details, the reader is
referred to the highly technical book by Brian Punsly (2001) and related articles
(Punsly 1998a, b, and Punsly et al 2000). In Figures 16, and 17 the magnetic
field around a Kerr-Newman black hole surrounded by charged current ring are
shown. The opposite charged black hole and ring are the minimum energy con-
figuration for the system black hole plus magnetosphere. Since the system is
neutral from the infinity, it discharges slowly and can survive for a few thou-
sand years. During this period, the source can be active, through the capture of
free electrons from the environment and the production of gamma rays by inverse
Compton up-scattering of synchrotron photons produced by electrons accelerated
in the polar gap of the hole. In Figure 18 we show the corresponding spectral
energy distribution obtained by Punsly et al. (2000) for such a configuration of
Kerr-Newman black hole magnetosphere.

Einstein-Maxwell equations

In order to determine the gravitational and electromagnetic fields over a region
of a space-time we have to solve the Einstein-Maxwell equations:
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Figure 17. Three different scales of the Kerr-Newman black hole
model developed by Brian Punsly. From Punsly (1998a).
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Figure 18. The spectral energy distribution resulting from a Kerr-
Newman black hole slowly accreting from the interstellar medium.
Adapted from Punsly et al. (2000).
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Rμν − 1

2
Rgμν + Λgμν = −8πG

c4
(Tμν +Eμν) , (214)

4π

c
Eμ

ν = −FμρFρν +
1

4
δμνF

σλFσλ, (215)

Fμν = Aμ;ν −Aν ;μ , (216)

F ν
μ ;ν =

4π

c
Jμ. (217)

Here Tμν and Eμν are the energy-momentum tensors of matter and electromag-
netic fields, Fμν and Jμ are the electromagnetic field and current density, Aμ is
the 4-dimensional potential and Λ is the cosmological constant.

The solution of this system of equations is non-trivial since they are coupled.
The electromagnetic field is a source of the gravitational field and this field enters
into the electromagnetic equations through the covariant derivatives indicated
by the semi-colons. For an exact and relevant solution of the problem see Manko
& Sibgatullin (1992).

18.3. Born-Infeld black holes

Born and Infeld (1934) proposed a nonlinear theory of electrodynamics to avoid
the singularities associated with charged point particles in Maxwell theory. Al-
most immediately, Hoffmann (1935) coupled general relativity with Born-Infeld
electrodynamics to obtain a spherically symmetric solution representing the grav-
itational field of a charged object. This solution, forgotten during decades, can
represent a charged black hole in nonlinear electrodynamics. In Born–Infeld
electrodynamics the trajectories of photons in curved spacetimes are not null
geodesics of the background metric. Instead, they follow null geodesics of an
effective geometry determined by the nonlinearities of the electromagnetic field.

The action of Einstein gravity coupled to Born–Infeld electrodynamics has
the form (in this section we adopt, for simplicity in the notation, c = G = 4πε0 =
(4π)−1μ0 = 0):

S =

∫
dx4

√−g
(
R

16π
+ LBI

)
, (218)

with

LBI =
1

4πb2

(
1−

√
1 +

1

2
FσνF σνb2 − 1

4
F̃σνF σνb4

)
, (219)

where g is the determinant of the metric tensor, R is the scalar of curvature,
Fσν = ∂σAν − ∂νAσ is the electromagnetic tensor, F̃σν = 1

2

√−g εαβσνFαβ is
the dual of Fσν (with εαβσν the Levi–Civita symbol) and b is a parameter that
indicates how much Born–Infeld and Maxwell electrodynamics differ. For b→ 0
the Einstein–Maxwell action is recovered. The maximal possible value of the
electric field in this theory is b, and the self-energy of point charges is finite. The
field equations can be obtained by varying the action with respect to the metric
gσν and the electromagnetic potential Aν .

We can write LBI in terms of the electric and magnetic fields:
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LBI =
b2

4π

⎡⎣1−
√
1− B2 − E2

b2
− ( �E �B)2

b4

⎤⎦ . (220)

The Larangian depends non-linearly of the electromagnetic invariants:

F =
1

4
FαβF

αβ =
1

2
(B2 − E2), (221)

G̃ =
1

4
FαβF̃

αβ = −B̄ · Ē. (222)

Introducing the Hamiltonian formalism:

Pαβ = 2
∂L

∂Fαβ
=
∂L

∂F
Fαβ +

∂L

∂G̃
F̃αβ , (223)

H =
1

2
PαβFαβ − L(F, G̃2), (224)

and adopting the notation

P =
1

4
PαβP

αβ , (225)

Q̃ =
1

4
PαβP̃

αβ , (226)

we can express Fαβ as a function of Pαβ, P , and Q̃:

Fαβ = 2
∂H

∂Pαβ
=
∂H

∂P
Pαβ +

∂H

∂Q̃
P̃αβ. (227)

The Hamiltonian equations in the P and Q̃ formalism can be written as:(∂H
∂P

P̃αβ +
∂H

∂Q̃
Pαβ

)
,β

= 0. (228)

.
The couple Einstein-Born-Infeld equations are:

4πTμν =
∂H

∂P
PμαP

α
ν − gμν

(
2P

∂H

∂P
+ Q̃

∂H

∂Q̃
−H

)
, (229)

R = 8

(
P
∂H

∂P
+ Q̃

∂H

∂Q̃
−H

)
. (230)

The field equations have spherically symmetric black hole solutions given by

ds2 = ψ(r)dt2 − ψ(r)−1dr2 − r2dΩ2, (231)

with
ψ(r) = 1− 2M

r
+

2

b2r

∫ ∞

r

(√
x4 + b2Q2 − x2

)
dx, (232)
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D(r) =
QE

r2
, (233)

B(r) = QM sin θ, (234)

where M is the mass, Q2 = Q2
E + Q2

M is the sum of the squares of the electric
QE and magnetic QM charges, B(r) and D(r) are the magnetic and the electric
inductions in the local orthonormal frame. In the limit b → 0, the Reissner–
Nordström metric is obtained. The metric (231) is also asymptotically Reissner–
Norsdtröm for large values of r. With the units adopted above, M , Q and b have
dimensions of length. The metric function ψ(r) can be expressed in the form

ψ(r) = 1−2M

r
+

2

3b2

{
r2 −

√
r4 + b2Q2 +

√|bQ|3
r

F

[
arccos

(
r2 − |bQ|
r2 + |bQ|

)
,

√
2

2

]}
,

(235)
where F (γ, k) is the elliptic integral of the first kind10. As in Schwarzschild and
Reissner–Norsdtröm cases, the metric (231) has a singularity at r = 0 .

The zeros of ψ(r) determine the position of the horizons, which have to be
obtained numerically. For a given value of b, when the charge is small, 0 ≤
|Q|/M ≤ ν1, the function ψ(r) has one zero and there is a regular event horizon.
For intermediate values of charge, ν1 < |Q|/M < ν2, ψ(r) has two zeros, so
there are, as in the Reissner–Nordström geometry, an inner horizon and an outer
regular event horizon. When |Q|/M = ν2, there is one degenerate horizon.
Finally, if the values of charge are large, |Q|/M > ν2, the function ψ(r) has no
zeros and a naked singularity is obtained. The values of |Q|/M where the number
of horizons change, ν1 = (9|b|/M)1/3[F (π,

√
2/2)]−2/3 and ν2, which should be

calculated numerically from the condition ψ(rh) = ψ′(rh) = 0, are increasing
functions of |b|/M . In the Reissner–Nordström limit (b → 0) it is easy to see
that ν1 = 0 and ν2 = 1.

The paths of photons in nonlinear electrodynamics are not null geodesics
of the background geometry. Instead, they follow null geodesics of an effective
metric generated by the self-interaction of the electromagnetic field, which de-
pends on the particular nonlinear theory considered. In Einstein gravity coupled
to Born–Infeld electrodynamics the effective geometry for photons is given by :

ds2eff = ω(r)1/2ψ(r)dt2 − ω(r)1/2ψ(r)−1dr2 − ω(r)−1/2r2dΩ2, (236)

where

ω(r) = 1 +
Q2b2

r4
. (237)

Then, to calculate the deflection angle for photons passing near the black holes,
it is necessary to use the effective metric (236) instead of the background metric
(231). The horizon structure of the effective metric is the same that of metric
(231), but the trajectories of photons are different.

10F (γ, k) =
∫ γ

0
(1− k2 sin2 φ)−1/2dφ =

∫ sin γ

0
[(1− z2)(1− k2z2)]−1/2dz
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18.4. Regular black holes

Solutions of Einstein’s field equations representing black holes where the metric
is always regular (i.e. free of intrinsic singularities with RμνρσRμνρσ diverges)
can be found for some choices of the equation of state. For instance, Mbonye
and Kazanas (2005) have sugested the following equation:

pr(ρ) =

[
α− (α+ 1)

(
ρ

ρmax

)m]( ρ

ρmax

)1/n

ρ. (238)

The maximum limiting density ρmax is concentrated in a region of radius:

r0 =

√
1

Gρmax
. (239)

At low densities pr ∝ ρ1+1/n and the equation reduces to that of a polytrope
gas. At high densities, close to ρmax the equation becomes pr = −ρ and the
system behaves as a gravitational field dominated by a cosmological term in the
field equations. The exact values of m, n, and α determine the sound speed in
the system. Imposing that the maximum sound speed cs = (dp/dρ)1/2 be finite
everywhere, is possible to constrain the free parameters. Adopting m = 2 and
n = 1 the Eq. (238) becomes:

pr(ρ) =

[
α− (α+ 1)

(
ρ

ρmax

)2
](

ρ

ρmax

)
ρ. (240)

Then, the Schwarzschild solution can be written as:

ds2 =

(
1− 2GM(r)

rc2

)
eΓ(r)c2dt2 −

(
1− 2GM(r)

rc2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

(241)
where M(r) is the mass enclosed by a 2-sphere of radius r and:

Γ(r) =

∫
8π

[
α− (α+ 1)

(
ρ

ρmax

)2
](

ρ

ρmax

)(
r

r − 2GM(r)

)
ρdr. (242)

The mass within r is
M(r) = 4π

∫ r

0
ρ(r′)r′2dr′, (243)

and the total mass is

M =

∫ ∞

0
M(r)dr =

∫ ∞

0
ρ(r)r2dr. (244)

Since outside the body ρ → 0, Γ(r) → 1 and Eq. (241) becomes Schwarzschild
solution for Rμν = 0.

When r → 0, ρ = ρmax and the metric becomes of de Sitter type:

ds2 =

(
1− r2

r20

)
c2dt2 −

(
1− r2

r20

)−1

dr2 − r2(dθ2 + sin2 θdφ2), (245)
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with

r0 =

√
3

8πGρmax
. (246)

There is no singularity at r = 0 and the black hole is regular. For 0 ≤ r < 1 has
constant positive density ρmax and negative pressure pr = −ρmax and space-time
becomes asymptotically de Sitter in the inner most region. It might be speculated
that the transition in the equation of state occurs because at very high densities
the matter field couples with a scalar field that provides the negative pressure.

Other assumptions for the equation of state can lead to different (but still
regular) behavior, like a bouncing colse to r = 0 and the development of an
expanding closed universe inside the black hole (Frolov, Markov, and Mukhanov
1990). In addition, regular black holes can be found in f(R) gravity for some
suitable function of the curvature scalar.

19. Black hole formation

Black holes will form every time that matter and fields are compressed beyond
the corresponding Schwarzschild radius. This can occur in a variety of forms,
from particle collisions to the implosion of stars or the collapse of dark matter
in the early universe. The most common black hole formation mechanism in our
Galaxy seems to be gravitational collapse. A normal star is stable as long as the
nuclear reactions occurring in its interior provide thermal pressure to support it
against gravity. Nuclear burning gradually transforms the stellar core from H
to He and in the case of massive stars (M > 5 M�) then to C and finally to
Fe. The core contracts in the processes, in order to achieve the ignition of each
phase of thermonuclear burning.

Finally, the endothermic disintegration of iron-group nuclei, which are those
with the tightest bound, precipitates the collapse of the core to a stellar-mass
black hole. Stars with masses in the range 20− 30M� produce black holes with
M > 1.8 M�. Low-mass black holes (1.5 M� < M < 1.8 M�) can result from
the collapse of stars of 18 − 20 M� along with the ejection of the outer layers
of the star by a shock wave in an event known as Type II supernova. A similar
event, occurring in stars with 10 − 18 M� leaves behind a neutron star. Very
massive stars with high spin likely end producing a gamma-ray burst and a very
massive (M > 10 M�) black hole. The binary stellar systems have a different
evolution. The interested reader can find an comprehensive review in Brown et
al. (2000).

In Figure 19 we show the Eddignton-Finkelstein diagram of the gravitational
collapse of a star. Once the null surface of the light cones points along the time
axis the black hole is formed: light rays will never be again able to escape to the
outer universe. The different paths that can lead to a stellar mass black hole are
illustrated in Figure 20.

If the collapse is not perfectly symmetric, any asymmetry in the resulting
black hole is radiated away as gravitational waves, in such a way that the final
result is a black hole that is completely characterized by the three parameters
M , J , and Q. The black hole, once formed, has no hints about the details of the
formation process and its previous history.



62 Gustavo E. Romero

R

R

R

E

E

E

E

1

1

2

2

3

3

4

r = 2M

r = 0 singularity

 event
horizon

   distant
astronomer

light
cones

ingoing
  light
  rays

outgoing
  light
  rays

surface of the star

Figure 4

T
im

e

Space

Figure 19. An Eddington-Finkelstein diagram of a collapsing star
with the subsequent black hole formation. Adapted from J-P. Luminet
(1998).
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Figure 20. Life cycle of stars and channels for black hole formation.

Gravitational collapse can also be the result of inhomogeneities in the orig-
inal metric giving rise to mini-black holes as proposed by Hawking (1971), al-
though the number of microscopic black holes is strongly constrained by obser-
vations of cosmic gamma-ray background emission.

Finally, supermassive black holes can result from a variety of processes oc-
curring at the center of galaxies as discussed by Rees (1984). See Figure 21 for a
sketch of some possible formation paths. Some current views, however, suggest
that galaxies were formed around seed massive black holes which were the result
of the gravitational collapse of dark matter.

20. Black hole thermodynamics

The area of a Schwarzschild black hole is:

ASchw = 4πr2Schw =
16πG2M2

c4
. (247)

In the case of a Kerr-Newman black hole, the area is:

AKN = 4π

(
r2+ +

a2

c2

)

= 4π

[(
GM

c2
+

1

c2

√
G2M2 −GQ2 − a2

)2

+
a2

c2

]
. (248)

Notice that expression (248) reduces to (247) for a = Q = 0.
When a black hole absorbs a mass δM , its mass increases to M + δM , and

hence, the area increases as well. Since the horizon can be crossed in just one
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Figure 21. Massive and supermassive black hole formation channels.
From Rees (1984).
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direction the area of a black hole can only increase. This suggests an analogy
with entropy. A variation in the entropy of the black hole will be related to the
heat (δQ) absorbed through the following equation:

δS =
δQ

TBH
=
δMc2

TBH
. (249)

Particles trapped in the black hole will have a wavelength:

λ =
h̄c

kT
∝ rSchw, (250)

where k is the Boltzmann constant. Then,

ξ
h̄c

kT
=

2GM

c2
,

where ξ is a numerical constant. Then,

TBH = ξ
h̄c3

2GkM
, and S =

c6

32πG2M

∫
dASchw

TBH
=

c3k

16πh̄Gξ
ASchw + constant.

A quantum mechanical calculation of the horizon temperature in the Schwarzschild
case leads to ξ = (4π)−1 and hence:

TBH =
h̄c3

8GMk
∼= 10−7K

(
M�
M

)
. (251)

We can write then the entropy of the black hole as:

S =
kc3

4πh̄G
ASchw + constant ∼ 1077

(
M

M�

)2

k JK−1. (252)

The formation of a black hole implies a huge increase of entropy. Just to com-
pare, a solar mass star has an entropy ∼ 20 orders of magnitude lower. This
tremendous increase of entropy is related to the loss of all the structure of the
original system (e.g. a star) once the black hole is formed.

The analogy between area and entropy allows to state a set of laws for black
holes thermodynamics:

• First law (energy conservation): dM = TBHdS +Ω+dJ +ΦdQ. Here, Ω is
the angular velocity and Φ the electrostatic potential.

• Second law (entropy never decreases): In all physical processes involving
black holes the total surface area of all the participating black holes can
never decrease.

• Third law (Nernst’s law): The temperature (surface gravity) of a black
black hole cannot be zero. Since TBH = 0 with A �= 0 for extremal charged
and extremal Kerr black holes, these are thought to be limit cases that
cannot be reached in Nature.

• Zeroth law (thermal equilibrium): The surface gravity (temperature) is
constant over the event horizon of a stationary axially symmetric black
hole.
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21. Quantum effects in black holes

If a temperature can be associated with black holes, then they should radiate as
any other body. The luminosity of a Schwarzschild black hole is:

LBH = 4πr2SchwσT
4
BH ∼ 16πσh̄4c6

(8π)4G2M2k4
. (253)

Here, σ is the Stephan-Boltzmann constant. This expression can be written as:

LBH = 10−17
(
M�
M

)2

erg s−1. (254)

The lifetime of a black hole is:

τ ∼= M

dM/dt
∼ 2.5 × 1063

(
M

M�

)3

years. (255)

Notice that the black hole heats up as it radiates!. This occurs because when the
hole radiates, its mass decreases and then according to Eq. (251) the temperature
must rise.

If nothing can escape from black holes because of the existence of the event
horizon, what is the origin of this radiation?. The answer, found by Hawking
(1974), is related to quantum effects close to the horizon. According to the
Heisenberg relation ΔtΔE ≥ h̄/2 particles can be created out of the ground
state of a quantum field as far as the relation is not violated. Particles must be
created in pairs, along a tiny time, in order to satisfy conservation laws other
than energy. If a pair is created close to the horizon an one particle crosses
it, then the other particle can escape provided its momentum is in the outward
direction. The virtual particle is then transformed into a real particle, at expense
of the black hole energy. The black hole then will lose energy and its area will
decrease slowly, violating the second law of thermodynamics. However, there is
no violation if we consider a generalized second law, that always holds: In any
process, the total generalized entropy S+SBH never decreases (Bekenstein 1973).

22. Black hole magnetospheres

In the real universe black holes are not expected to be isolated, hence the er-
gosphere should be populated by charged particles. This plasma would rotate
in the same sense as the black hole due to the effects of the frame dragging.
A magnetic field will develop and will rotate too, generating a potential drop
that might accelerate particles up to relativistic speed and produce a wind along
the rotation axis of the hole. Such a picture has been consistently developed by
Punsly and Coroniti (1990a, b) and Punsly (2001).

In Figures 22 and 23 we show the behavior of fields and currents in the
ergosphere. Since the whole region is rotating, an ergospheric wind arises along
the direction of the large scale field.

Blandford and Znajek (1977) developed a general theory of force-free steady-
state axisymmetric magnetosphere of a rotating black hole. In an accreting black
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Figure 22. Currents in the infalling matter supports a radial magnetic
field. As the inner part of the current sheet approaches to the black hole
the sources are redshifted to observers at infinity and their contribution
to the poloidal magnetic field diminish. At some point X, the field
reconnects. From Punsly & Coroniti(1990a).

Figure 23. As reconnection proceeds, the magnetic field around the
innermost currents is disconnected from the large scale field allowing
the destruction of the magnetic flux by the black hole. From Punsly &
Coroniti(1990a).
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hole, a magnetic field can be sustained by external currents, but as such currents
move along the horizon, the field lines are usually representing as originating
from the horizon and then being torqued by rotation. The result is an outgoing
electromagnetic flux of energy and momentum. This picture stimulated the
development of the so-called “membrane paradigm” by Thorne et al. (1986)
where the event horizon is attributed with a set of physical properties. This
model of black hole has been subjected to strong criticism by Punsly (2001)
since General Relativity implies that the horizon is causally disconnected from
the outgoing wind.

Recent numerical simulations (e.g. Komissarov 2004) show that the key role
in the electrodynamic mechanisms of rotating black holes is played by the ergo-
sphere and not by the horizon. However, globally the Blandford-Znajek solution
seems to be asymptotically stable. The twisted magnetic fields in the ergosphere
of a Kerr black hole are shown in Figures 24, 25 and 26. The controversy still
goes on and a whole bunch of new simulations are exploring the different aspects
of relativistic magneto-hydrodynamic (MHD) outflows from black hole magne-
tospheres. We will say more about these outflows when discussing astrophysical
jets.

23. Back hole interiors

The most relevant feature of black hole interiors is that the roles of space and
time are exchanged: the space radial direction becomes time, and time becomes a
space direction. Inside a spherical black hole, the radial coordinate becomes time-
like: changes occur in a prefer direction, i.e. toward the space-time singularity.
This means that the black hole interior is essentially dynamic. In order to see
this, let us recall the Schwardzschild metric (139):

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2(dθ2 + sin2 θdφ2).

If we consider a radially infalling test particle:

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2.

The structure of the light cones is defined by the condition ds = 0. Writing rSchw
once again for the Schwarzschild radius, we get:(

1− rSchw
r

)
c2dt2 −

(
1− rSchw

r

)−1

dr2 = 0. (256)

If we consider the interior of the black hole, r < rSchw. Then,(
1− rSchw

r

)−1

dr2 −
(
1− rSchw

r

)
c2dt2 = 0. (257)

The signs of space and time are now exchanged. The light cones, that in
Schwarzschild coordinates are shown in Fig. 5, are now oriented with the time
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Figure 24. Effects of the ergosphere of a Kerr black hole on external
magnetic field lines. Credit NASA Jet Propulsion Laboratory (NASA-
JPL).
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Figure 25. Three-dimensional graphic of magnetic field lines and
plasma flow around the Kerr black hole. The black sphere at the center
depicts the black hole horizon. The transparent (gray) surface around
the black hole is that of the ergosphere. The arrows show the plasma
flow velocity. The tubes in the shape of propellers show the magnetic
field lines. From Koide (2004).
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Figure 26. Black hole magnetosphere (corona) and resulting outflows.
From Koide et al. (1999).

axis perpendicular to the event horizon. The trajectory of photons is given by:

dr

dt
= ∓c

∣∣∣∣1− rSchw
r

∣∣∣∣ , (258)

with r always decreasing. The light cones are thinner and thinner as r gets closer
to the singularity at r = 0. In addition to infalling particles, there is a small
flux of gravitational radiation into the black hole through the horizon because
of small perturbations outside it. This radiation, as the material particles and
photons, ends in the singularity.

In the case of a Kerr black hole, between the two horizons space and time
also exchange roles as it happens with the Schwarzschild interior black hole space-
time. Instead of time always moving inexorably onward, the radial dimension of
space moves inexorably inward to the second horizon, that it is also a Cauchy
horizon, i.e. a null hyper-surface beyond which predictability breaks down. After
that, the Kerr solution predicts a second reversal so that one can avoid the
ring singularity and achieve to orbit safely. In this strange region inside the
Cauchy horizon the observer can, by selecting a particular orbit around the ring
singularity, travel backwards in time and meet himself, i.e. there are closed time-
like curves. Another possibility admitted by the equations for the observer in
the central region is to plunge through the hole in the ring to emerge in an anti-
gravity universe, whose physical laws would be even most peculiar. Or he can
travel through two further horizons, (or more properly anti-horizons), to emerge
at coordinate time t = ∞ into some other universe. All this can be represented
in a Penrose-Carter diagram for a Kerr black hole (see Figure 27).

All the above discussion on Kerr black hole interiors is rather academic, since
in real black holes the inner horizon is likely unstable. Poisson and Israel (1990)
have shown that when the space-time is perturbed by a fully non-linear, ingoing,
spherically-symmetric null shell, a null curvature singularity develops at the inner
horizon. This singularity is “weak” in the sense that none the scalar curvature
invariants is divergent there. The singularity development at the Cauchy horizon
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Figure 27. Penrose-Carter diagram of a non-extreme Kerr solution.
The figure is repeated infinitely in both direction. One trajectory ends
in the singularity (A), the other two (B and C) escape. IH stands
for “inner horizon”, EH for “external horizon”, and S for “singularity”.
Adapted from J.-P. Luminet (1997).
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Figure 28. Diagram representing a Kerr black hole interior and the
accumulation of energy-momentum at the inner horizon.

would deal off the “Kerr tunnel” that would lead to other asymptotically flat
universes. The key factor producing the instability is the infinite concentration
of energy density close to the Cauchy horizon as seen by a free falling observer.
The infinite energy density is due to the ingoing gravitational radiation, which
is partially backscattered by the inner space-time curvature. The non-linear
interaction of the infalling and outgoing gravitational fluxes results in the weak
curvature singularity on the Cauchy horizon, where a tremendous inflation of
the mass parameter takes place (see Figure 28). This changes the conception
of the Kerr black hole interior, since instead of a Cauchy horizon acting as a
curtain beyond which predictability breaks down we have a microscopically thin
region near the inner horizon where the curvature is extremely high (Poisson and
Israel 1990). Other analysis based on plane-symmetric space-time analysis seem
to suggest that instead of a null, weak singularity a space-like strong singularity
is formed under generic non-linear perturbations (Yurtsever 1993). This is the
same result that can be obtained through a linear perturbation analysis of the
inner horizon. More recent numerical investigations using regular initial data
find a mass inflation-type null singularity (Droz 1997).

The issue of realistic black hole interiors is still an open one, with active
research ongoing.

24. Singularities

A space-time is said to be singular if the manifold M that represents it is in-
complete. A manifold is incomplete if it contains at least one inextendible curve.
A curve γ : [0, a) −→ M is inextendible if there is no point p in M such that
γ(s) −→ p as a −→ s, i.e. γ has no endpoint in M . A given space-time
(M,gab) has an extension if there is an isometric embedding θ : M −→ M ′,
where (M ′, g′ab) is a space-time and θ is onto a proper subset of M ′. A space-
time is singular if it contains a curve γ that is inextendible in the sense given
above. Singular space-times contain singularities.
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A so-called coordinate singularity is not as real singularity. It seems to be
singular in some space-time representation but it can be removed by a coordinate
change, like the “Schwarzschild singularity” at rScwh = 2GM/c2 in a Schwarzchild
space-time. We can change to Eddington-Finkelstein coordinates, for instance,
and then we see that geodesic lines can go through that point of the manifold.
Essential singularities cannot be removed in this way. This occurs, for instance,
with the singularity at r = 0 in the Schwarzschild space-time or with the ring
singularity at r = 0 and θ = π/2 in the Kerr metric written in Boyer-Lindquist
coordinates11. In such cases, the curvature scalar RμνρσRμνρσ diverges. There is
no metric there, and the Einstein equations cannot be defined.

An essential or true singularity should not be interpreted as a representation
of a physical object of infinite density, infinite pressure, etc. Since the singularity
does not belong to the manifold that represents space-time in General Relativity,
it simply cannot be described or represented in the framework of such a theory.
General Relativity is incomplete in the sense that it cannot provide a full de-
scription of the gravitational behavior of any physical system. True singularities
are not within the range of values of the bound variables of the theory: they do
not belong to the ontology of a world that can be described with 4-dimensional
differential manifolds.

An essential singularity in solutions of the Einstein field equations is one of
two things:

1. A situation where matter is forced to be compressed to a point (a space-like
singularity).

2. A situation where certain light rays come from a region with infinite cur-
vature (time-like singularity).

Space-like singularities are a feature of non-rotating uncharged black-holes, whereas
time-like singularities are those that occur in charged or rotating black hole exact
solutions, where time-like or null curves can always avoid hitting the singularities.

Singularities do not belong to classical space-time. This is not surprising
since singularities are extremely compact systems. At such small scales, relations
among things should be described in a quantum mechanical way. If space-time
is formed by the events that occur to things, it should be represented through
quantum mechanic theory when the things are described by a quantum theory.
Since even in the standard quantum theory time appears as a continuum variable,
a new approach is necessary.

Space-time singularities are expected to be covered by horizons. Although
formation mechanisms for naked singularities have been proposed, the following
conjecture is usually considered valid:

• Cosmic Censorship Conjecture (Roger Penrose): Singularities are always
hidden behind event horizons.

We emphasize that this conjecture is not proved in General Relativity and
hence it has not the strength of a theorem of the theory.

11In Cartesian coordinates the Kerr singularity occurs at x2 + y2 = a2c−2 and z = 0.
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The classical references on singularities are Hawking and Ellis (1973) and
Clarke (1993).

Singularity theorems

Several singularity theorems can be proved from pure geometrical properties of
the space-time model (Clarke 1993). The most important one is due to Hawking
& Penrose (1970):

Theorem. Let (M, gab) a time-oriented space-time satisfying the following
conditions:

1. RabV
aV b ≥ 0 for any non space-like V a.

2. Time-like and null generic conditions are fulfilled.

3. There are no closed time-like curves.

4. At least one of the following conditions holds

• There exists a compact12 achronal set13 without edge.
• There exists a trapped surface.
• There is a p ∈ M such that the expansion of the future (or past)

directed null geodesics through p becomes negative along each of the
geodesics.

Then, (M, gab) contains at least one incomplete time-like or null geodesic.

The theorem is purely geometric, no physical law is invoked. If the theorem
has to be applied to the physical world, the hypothesis must be supported by
empirical evidence. Condition 1 will be satisfied if if the energy-momentum
T ab satisfies the so-called strong energy condition: Tabξaξb ≥ −(1/2)T a

a , for any
time-like vector ξa. If the energy-momentum is diagonal: Tμμ = (ρ,−p,−p,−p)
the strong enegy condition can be written as: ρ + 3p ≥ 0 and ρ + p ≥ 0.
Condition 2 requires that any time-like or null geodesic experiences a tidal force
at some point in its history. Condition 4a requires that, at least at one time,

12A space is said to be compact if whenever one takes an infinite number of "steps" in the space,
eventually one must get arbitrarily close to some other point of the space. Thus, whereas disks
and spheres are compact, infinite lines and planes are not, nor is a disk or a sphere with a
missing point. In the case of an infinite line or plane, one can set off making equal steps in any
direction without approaching any point, so that neither space is compact. In the case of a disk
or sphere with a missing point, one can move toward the missing point without approaching any
point within the space. More formally, a topological space is compact if, whenever a collection
of open sets covers the space, some subcollection consisting only of finitely many open sets also
covers the space. A topological space is called compact if each of its open covers has a finite
subcover. Otherwise it is called non-compact. Compactness, when defined in this manner,
often allows one to take information that is known locally – in a neighborhood of each point
of the space – and to extend it to information that holds globally throughout the space.

13A set of points in a space-time with no two points of the set having time-like separation.
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the universe is closed and the compact slice that corresponds to such a time
is not intersected more than once by a future directed time-like curve. The
trapped surfaces mentioned in 4b refers to horizons due to gravitational collapse.
Condition 4c requires that the universe is collapsing in the past or the future.

A closely related theorem is due to Hawking (1967):

Theorem. Let (M, gab) a time-oriented space-time satisfying the following
conditions:

1. RabV
aV b ≥ 0 for any non space-like V a.

2. There exists a compact space-like hypersurface Σ ⊂M without edge.

3. The unit normals to Σ are everywhere converging (or diverging).

Then, (M, gab) is time-like geodesically incomplete.

Although singularity theorems apply to spherically symmetric black holes,
they do not seem to apply to the Universe as a whole.

25. Accretion onto black holes

Accretion is the process of matter falling into the potential well of a gravitating
object. The accretion of matter which does not have angular momentum is
basically determined by the relation between the sound speed as in the matter
and the velocity of the object respect to the medium vrel (Bondi & Hoyle 1944).
The accretion of matter with angular momentum can lead to the formation of an
accretion disk around the compact object (Shakura & Sunyaev 1973). In what
follows, we will discuss the fluid dynamics of accretion onto a black hole.

The are four basic regimes of accretion onto a black hole:

• Spherical symmetric accretion. It occurs when vrel << as and the accreting
matter does not have any significant angular momentum.

• Cylindrical accretion. The angular momentum of the medium remains
small but now vrel ≥ as.

• Disk accretion. The total angular momentum of matter is enough as to
form an accretion disk around the black hole.

• Two-stream accretion. Both a quasi-spherically symmetric inflow of matter
coexists with disk accretion (e.g. Narayan & Yi 1994).

The fluid dynamic description of a physical process is applicable if the free
mean path for particles in the medium is much shorter than the typical size-scale
of the system. In the case of accretion, the self-gravitation of the accreting matter
is usually negligible, so the characteristic length is the gravitational capture
radius RG. This quantity is equal to the distance at which the kinetic energy of
the matter is of the order of the gravitational energy:

1

2
(a2s + v2rel) =

GM

RG
.
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Here, M is the mass of the accreting object. Hence,

RG =
2GM

a2s + v2rel
. (259)

In the absence of radiation, the equations that fully describe the accretion
process are:

∂�v

∂t
+ �v �∇�v = −1

ρ
�∇P − �∇φ, (260)

∂ρ

∂t
+ �∇(ρ�v) = 0, (261)

P = P (ρ), (262)

∇2φ = −4πGρtot. (263)

Equation (260) is the non-relativistic Euler’s equation in a gravitational field of
potential φ, with P being the fluid pressure and ρ its density. Equation (315) is
the continuity equation. The third equation is the equation of state of the fluid.
The final equation is Poisson’s equation for the gravitational potential produced
by the total mass density of the system. By the moment we assume non-radiative
and non-relativistic accretion.

The accretion rate onto the black hole will be:

Ṁ = σGρvrel, (264)

where σG is the cross section of gravitational capture. This cross section strongly
depends on the nature of the gas. If the gas is formed by collisionless particles,
these can be captured only if they have an impact parameter smaller than the
size of the compact object, whereas if the gas is a continuous media, angular mo-
mentum is not conserved and essentially all particles with kinetic energy smaller
than the gravitational energy will be captured. Considering a Schwarzschild
black hole, then, we have:

σG(collisionless)

σG(continuous)
=
RSchw

RG
<< 1. (265)

Under typical conditions in the interstellar medium the accretion of fluid is about
a million times the accretion of collisionless particles. The accretion rate of Eq.
(264) can be written is the case of fluid dynamics as:

Ṁ = πR2
Gρvrel. (266)

25.1. Spherically symmetric accretion

Bondi (1952) was the first to obtain the stationary spherically symmetric solution
of Eqs (260-263), assuming an adiabatic equation of state P ∝ ργ . The Euler
equation implies the conservation of energy:

v2

2
+

γ

γ − 1

P

ρ
− GM

R
= constant = ε0. (267)
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The continuity equation can written as:

Ṁ = 4πR2ρv = constant, (268)

where we have considered accretion over a sphere of radius R.
The boundary conditions at infinity imply:

ε0 =
γ

γ − 1

P∞
ρ∞

=
a2∞
γ − 1

. (269)

The speed of sound is

as =

√
∂P

∂ρ
=

√
γP

ρ
.

Then,
v2

2
+

a2s
γ − 1

=
GM

R
+

a2∞
γ − 1

, (270)

and

v =
Ṁ

4πρ∞R

(
a∞
as

)2/(γ−1)

. (271)

There is a critical point at R = Rs which the gas velocity overcomes the
speed of the sound. At R << Rs the matter is practically in a state of free fall
toward the black hole. This is because of the flow becomes supersonic and then
the underlying layers do not do not affect the entrained matter. Then, we can
write:

v ≈
√

2GM

R
, (272)

and

ρ ≈ Ṁ

4π
√
2GM

R−3/2. (273)

If the effect of radiation is going to be taken into account, then we add the
second law of thermodynamics to Eqs. (260-263). The energy variation per unit
mass is:

dε = −PdV + dQ, (274)

where V is the specific gas volume and dQ is the heat released by unit mass. For
the case of a monoatomic gas or a fully ionized plasma, we have:

3

2μ
Ru

dT

dt
= Ru

T

μρ

dρ

dt
− αffT

1/2ρ+
dQ

dt
. (275)

Here, Ru is the universal gas constant, the second term on the right is due to
Bremsstrahlung losses (αff ≈ 5 × 1020 erg g−1 s−1), and the third term takes
into account other possible radiation losses. Using vdt = dR and reminding that
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ρ ∝ R−3/2, we can obtain the equation for the temperature distribution in a
steady state spherically symmetric accretion flow:

dT

dR
= −T

R
+ constant

√
T

R
+

2μ

3Ru

dQ

dR
. (276)

Notice that if there are no additional radiation losses besides free-free radiation
(dQ/dR = 0), Eq. (276) can be solved to obtain

T =

[
K ln

(
R

RG

)
+ T 1/2

∞
]2
, (277)

where we have assumed that at R = RG the matter temperature is T∞. Eq.
(277) shows that under such conditions the temperature decreases as the flow
approaches to the black hole. A fluid that behaves in this way is called a cooling
flow.

The radial free fall time is:

tfall ≈ R

vR
∝ R3/2, (278)

whereas the cooling time for free-free losses (dQ/dT ∝ T 1/2ρ) is14:

tcool =
3RuT

2dQ/dt
∝

√
T

ρ
≈ R. (279)

Comparing both equations we see that the relative role of cooling decreases as
the black hole is approached.

Close to the black hole, however, there could be sources of radiation, if
magnetic field and angular momentum are involved. The outgoing radiation will
pass through the accretion flow and can influence its dynamics. Let σ be the
cross section of interaction of the emitted radiation with matter.The force acting
upon the infalling particles is:

Frad =
σL

4πR2c
, (280)

where L is the luminosity of the radiation. The attractive gravitational force on
a particle of mass mp is:

Fgrav =
GMmp

R2
, (281)

with M the mass of the black hole. For a luminosity L = LEdd these forces are
balanced and spherical accretion is stopped:

LEdd =
4πMmpc

σ
. (282)

14Notice that T ∝ R−1 and ρ ∝ R3/2.
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This critical luminosity is called the Eddington luminosity of the accreting source.
In the case of Thomson scattering σ = σT ≈ 0.66×10−24 cm2, and we can write:

LEdd ≈ 1.3× 1038
(
M

M�

)
erg s−1. (283)

Associated with the Eddington luminosity we have a critical accretion rate:

ṀEdd =
LEdd

c2
≈ 0.2× 10−8

(
M

M�

)
M� yr−1. (284)

The Eddington temperature TEdd is the characteristic black body temperature
required for a body with the Schwarzschild radius to radiate LEdd:

TEdd =

(
LEdd

4πσSBR2
Schw

)
≈ 6.6× 107

(
M

M�

)−1/4

K. (285)

Another way to inhibit spherical accretion is the production of winds or
particle ejection in the inner accreting regions. If Lej is the power carried away
by the ejected particles and vej is their velocity, the exerted pressure will be:

Pej =
Lej

4πR2vej
. (286)

If the central source ejects particles before the onset of the spherical accre-
tion, pressures must be equated at the gravitational capture radius to find the
critical luminosity in ejected particles:

Lej

4πR2
Gvej

= ρv2∞ =
Ṁ

4πR2
G

v∞.

From here we get:
Lcrit
ej = Ṁv∞vej. (287)

Using the fact that a fraction η of the accretion power is released as radiation,
i.e.

L = η ˙Mc2, (288)

we obtain
Lcrit
ej =

L

η

(
v∞vej
c2

)
. (289)

It can be seen that a weak wind can stop the the spherical accretion.

25.2. Cylindrical accretion

The problem of cylindrical accretion is the problem of the determination of the
gas accretion onto a moving gravitating center. Unlike the case of spherical
accretion, the problem is quite complex and there are not analytical solutions
of it. In cylindrical accretion, the velocity of the compact object respect to the
medium vrel is not negligible. In order to deal with the problem is convenient to
adopt a coordinate system centered in the moving object. The symmetry axis of
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Figure 29. Stream lines around a moving compact object. Adapted
from Foglizzo et al (2005).

the problem is determined by the line of motion of the object. The stream lines
of the fluid then are hyperbolas centered in this axis. As individual particles
move, the angular momentum is conserved relative to the accreting object (we
assume no viscosity):

|R× v| = bvrel, (290)
where b is the impact parameter. The contribution to the accretion is due only
to the component v⊥, which is perpendicular to the symmetry axis. A picture
of the situation is shown in Fig. 29, where the stagnation point is the point at
which v|| = 0.

If Rcol is the distance from the compact object on the symmetry axis:

v⊥Rcol = bvrel. (291)

The particles to be captured by the compact object are those for which the
velocity is lower than the parabolic velocity:

v|| ≤
√(

2GM

Rcol

)
. (292)

The conservation of energy implies:

1

2
(v2|| + v2⊥)−

GM

Rcol
=

1

2
v2rel. (293)

It follows from Eqs. (292) and (293) that only particles satisfying v⊥ ≤ vrel
will be captured. The gravitational capture cross section is determined by the
capture radius:

σG ≈ πR2
G. (294)
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Figure 30. Simulation of a compact object moving supersonically in
a fluid. A bow shock is formed around the moving object.

If we work in the fluid approximation, the supersonic motion of the compact
object will lead to the formation of a bow shock (see Fig. 30).

A moving body through a gaseous medium with produce density perturba-
tions. If these perturbations are small, we can write:

ρ = ρ∞ + δρ, δ =
δρ

ρ∞
. (295)

In addition, we assume that the gravitational center is point-like and moves at
v∞. The accretion rate is:

Ṁ = ξ1πR
2
Gv∞ρ∞,

wheres ξ1 is a dimensionless parameter of the order of unity. Introducing the
perturbation (295) in Eqs. (260-263) and linearizing, we get:

∂v

∂t
= −a2∞�∇δ + �∇φ, (296)

∂δ

∂t
+ �∇v = −ξ1πR2

Gv∞δ(R − v∞t), (297)

∇2δφ = −4πG(ρtot + δρ∞). (298)
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Using the Jeans wavelength15 (Zeldovich & Novikov 1971):

k2J =
4πGρ∞
a2∞

, (299)

we can cast Eqs. (296-297) in the following form of an equation in the pertur-
bations produced by the moving gravitational center:

�2δ + k2Ja
2
∞δ = −4πGρtot + ξ1πR

2
Gv∞

∂

∂t
δ(R − v∞t). (300)

To simplify Eq. (300), we can center the center the coordinate system in
the moving object and neglect self-gravity of the gas (kJ). Then, (300) can be
written as:

(a2∞ − v2∞)∇2δ = 4πGMδ(R). (301)
The solution is (Lipunov 1992):

δ =
RGv∞

a∞R
(
1− v2∞

a2∞ sin2 θsh

)1/2 . (302)

If we introduce the Mach number MM = v∞/a∞, we see from Eq. (302)
that there is a singularity at the surface of the cone described by:

sin θsh =
1

MM
. (303)

This means that the solution (302) is not valid close to the cone, which implies
that a shock wave is formed, with a form of a cone with opening angle θsh (see
Fig. 30). This shock is called a “bow shock”.

A force due to dynamical friction opposes to the motion of the compact
object, slowing it down. Such a force is the result that the density in the back-
ground matter in the wake is higher than in front of the moving center. The
dynamic friction force is:

Ffr = πR2
Gρ∞v∞. (304)

Numerical simulations show that the accretion flow pattern is complicated
and dependent on the efficiency of the gas cooling mechanism. The simulations
also show the formation of a frontal shock at a distance ∼ RG. This region is
prone to suffer Reyleight-Taylor instabilities (e.g. Araudo et al. 2009). In Fig.
31 we show a 3D Smooth Particle Hydrodynamic (SPH) simulation of a moving
black hole in a stellar wind.

The temperature in the wake of the the shock is (Lang 1999):

Tsh =
mpv

2∞
6k

≈ 2.5× 105
(

v∞
107 cm s−1

)2

K, (305)

where k is the Boltzmann’s constant.
A realistic study of the accretion regimes onto moving objects requires ex-

tensive numerical simulations.

15The Jeans wavelength kJ is defined such that any small sinusoidal density disturbance with a
wavelength exceeding 2π/kJ will be gravitationally unstable. The Jeans critical mass is usually
defined as the density times the cubic of the length. Higher masses than the Jeans mass start
to condense gravitationally.
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Figure 31. 3D-SPH simulation of the accretion onto a black hole mov-
ing through a stellar wind. The arrows indicete the direction of the flow.
From Okazaki et al. (2009).
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Figure 32. Accretion disk in the Shakura-Sunyaev model, with re-
gions of different physical conditions. From Shakura & Sunyaev (1973).

25.3. Disk accretion

In most realistic astrophysical situations the matter captured by a gravitational
field will have a total non-zero angular momentum. The accretion of matter
with angular momentum onto a black hole leads to the formation of an accretion
disk. The main difficulty in the formulation of a consistent theory of accretion
disks lies in the lack of knowledge on the nature of turbulence in the disk and,
therefore, in the estimate of the dynamic viscosity.

We shall consider steady state accretion disk where the accretion rate is
considered as an external parameter and the characterization of the turbulence
is provided by a unique parameter: the so-called α parameter, introduced by
Shakura (1972) and Shakura & Sunyaev (1973).

We shall start with the following simplifying assumptions: 1) the disk is
thin, i.e. its characteristic scale in the z-axis is H << R (see Fig. 32), 2) the
matter in the disk is in hydrostatic equilibrium in the z-axis, 3) self-gravitation
of the disk can be neglected. Condition 2) can be expressed as:

1

ρ

dP

dz
= −GM

R3
z. (306)

If as is the sound speed, H = Δz is the half-thickness of the disk, and P = ρa2s ,
we can re-write Eq. (306) in the following way:

as = ωKH, (307)

where

ωK =

√
GM

R3
(308)

is the Keplerian angular velocity. Assuming circular orbits:

vφ =

√
GM

R
= ωKR. (309)

Form Eqs.(308) and (309), it follows

as
vφ

≈ H

R
. (310)
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Notice that since the particles move into Keplerian orbits there is no pres-
sure gradient along R. The transport of angular momentum along the disk is
associated with the moment of viscous forces:

Ṁ
dωK

dR
R2 = 2π

d

dR
WrφR

2. (311)

Here, Wrφ is the component of the viscous stress in the disk:

Wrφ = −2ηHR
∂ωK

∂R
. (312)

The parameter η is the dynamic viscosity averaged over the z-coordinate. Notice
that for a rigid body ∂ωK/∂R = 0 and the viscous stress vanishes.

The viscosity of isotropic turbulence is (Landau & Lifshitz 2002): η =
(1/3)ρvtlt, where vt and lt are the characteristic velocity and scale of the tur-
bulence, respectively. Shakura (1972) introduced the following expression to
characterize the viscous fluid:

vtlt = αasH, (313)

where α is the viscosity parameter. Since vt < as
16 and lt < H, then α ≤ 1.

Equation (311) can be integrated yielding:

Wrφ = −Ṁ
2π
ωK

[
1−

(
Rd

R

)1/2
]
+Wrφ(in), (314)

where Rd is the radius of the inner edge of the disk and Wrφ(in) is the component
of the tensor of viscous stress evaluated at R = Rd. As we have seen before, for
a Schwarzschild black hole the last stable orbit is at Rd = 3RSchw. For this last
orbit, we can take:

Wrφ(in) = 0.

The continuity equation can be written as:

Ṁ = 2πρ(2H)RvR, (315)

with vR the radial velocity of the matter in the accretion disk.
Far from the inner edge we have:

Wrφ ≈ −Ṁ
2π
ωK ≈ 3ηHωK = αPH. (316)

From this equation and eq. (315) it can be obtained that

vR
vφ

≈ α

(
H

R

)2

. (317)

16Turbulence is quickly attenuated in supersonic flows.
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The transport of angular momentum in the disk results in the generation
of heat. We can express the heat produced per unit surface area of the disk per
unit of time on each side as:

Q+ = −1

2
WrφR

dω

dR
=

3

4
ωWrφ. (318)

This energy is carried away in the form of thermal radiation:

Q− = σSBT
4, (319)

where σSB is the Stephan-Boltzmann’s constant and we have assumed that the
disk radiates as a black body. In the steady state Q+ = Q−. If Q+ > Q− the
disk becomes thermally unstable. The full set of equations that determine the
disk accretion are:

1. ω = ωK =
(
GM
R3

)1/2
(Kepler’s law).

2. Ṁ = −2πΣvRR (continuity equation).

3. Wrφ = − Ṁ
2πωK

[
1−

(
Rd
R

)1/2]
+Wrφ(in) (variation of angular momentum).

4. P = Σω2H
6 (hydrostatic equilibrium).

5. Wrφ = αPH (viscous tensor).

6. Q+ = −1
2WrφR

dω
dR (energy release).

7. Q− = σSBT
4 (losses by radiation).

8. P = 3
2ρRu(Te + Ti) +

ε
3 (equation of state, with ε the energy density).

9. σ[cm2] = σT + σff ≈ 6.65 × 10−25n + 1.8×10−25

T7/2 (absorption cross section).

This is a system of 9 equations with 9 functions of R as solution. The
solutions where found by Shakura & Sunyaev (1973). For fixed values of M and
Ṁ , the disk can be into three different regions:

• An outer region (large R) where the gas pressure dominates over radiation
pressure and opacity is controlled by free-free absroption.

• A middle region (smaller R) where the gas pressure dominates over radia-
tion pressure but the opacity is due to electron scattering.

• An inner region (very small R) where radiation pressure dominates over
gas pressure and the opacity is also due to electron scattering.
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Luminosity and spectrum of standard accretion disks

The energy carried with the radiation released in a ring of thickness dR of the
accretion disk is:

dL(R) = 2Q+2πRdR, (320)

where the initial factor 2 is due to the two faces of the disk. This equation can
be written as:

dL(R) =
3

2
Ṁ

d

dR

GM

R2

⎛⎝1−
√
Rd

R

⎞⎠ dR. (321)

The power dL(R) corresponds to the work done by the gravitational field.
Approximately half of this power is transformed into kinetic energy of the matter
moving along φ and the other half is transformed into heat:

dLgr = Ṁ
d

dr

(
−GM

2R

)
dR =

1

2
Ṁ
GM

R2
dR. (322)

Comparing Eqs. (321) and (322) we see that at large distances from the
inner edge the dissipation rate is three times larger than the gravitational energy
release. This is because of th viscous effects, the half of the gravitational energy
is radiated from the disk globally but not locally. The total luminosity of the disk
is:

Ld =

∫ ∞

Rd

dL(R)

dR
dR =

ṀGM

2R
. (323)

Adopting Rd = 3RSchw and dividing by Ṁc2 we get the efficiency of energy
release in the disk accretion process: ∼ 8 %. For a Kerr black hole, where
Rd = Rg, the efficiency reaches ∼ 42 %.

Using Eq. (321) we get:

Q+ =
3

8π

ṀGM

R3
, (324)

for R >> Rd. Through the energy energy balance equation Q+ = Q− = σSBT
4

we can obtain the temperature distribution along the radial direction in the disk:

T (R) =

(
3

8πσSB
Ṁ
GM

R3

)1/4

∝ R−3/4. (325)

The total spectrum is the result of the superposition of the blackbody emis-
sion from each ring of temperature T (R):

Iν = 2π

∫ Rout

Rd

Bν [T (R)]RdR, (326)

with

Bν(T ) =
2πh

c2

(
kT

h

)3 x3

ex − 1
; x ≡ hv

kT
, (327)
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the Planck’s function. The result of the integration for Rout >> Rd is:

Iν =
16π2R2

d

c2

(
kTd
h

)8/3

hν1/3. (328)

The typical temperature can be obtained from:

1

2
Ṁ
GM

Rd
= 2πR2

dσSBT
4 (329)

The result is:

T =

(
ṀGM

4πR3
dσSB

)1/4

. (330)

This yields temperatures of ∼ 107 K for stellar mass black holes in binary systems
(Ṁ ∼ 1018 g s−1).

25.4. Advection-dominated accretion flows

Shapiro, Lightman, and Eardly (1976) found a self-consistent solution for the
hydrodynamical equations of an accreting flow onto a compact object, including
both rotation and viscosity. This solution has the characteristic that the plasma
has two-temperatures. The ion temperature (T ∼ 1012 K) is much higher than
the electron temperature (T ∼ 109 K). The plasma is optically thin and the
radiation has a power-law spectrum in X-rays, consistent with what is observed
in sources like Cygnus X-1. However, the solution is thermally unstable.

Thermally stable solutions were found by Begelman and Meier (1982) in
a super-Eddington accretion regime (the disk results optically thick) and by
Narayan and Yi (1994a,b, 1995a,b). The latter solution corresponds to sub-
Eddington accretion of a low-density gas. The energy released by viscosity is
stored in the plasma, which is advected and swallowed by the black hole. The
plasma is optically thin and with two temperatures. This type of solution de-
scribes what is known as advection-dominated accretion flows (ADAFs).

The different accretion regimes in an ADAF are determined by the param-
eter f defined as:

f =
Q+ −Q−

Q+
≡ Qadv

Q+
, (331)

i.e. as the ratio between the advected energy and the energy released through
viscosity. Different values of f correspond to different types of accretion.

• f � 1: in this case Q+ ≈ Q− � Qadv and all the energy released by viscos-
ity is radiated. This regime corresponds to thin disks and two-temperature
solutions such as that of Shapiro et al. (1976).

• f ≈ 1: here Qadv ≈ Q+ � Q−, the cooling is negligible and the flow is
ADAF-like.

• |f | � 1: corresponds to −Qadv ≈ Q− � Q+. The situation is like in the
Bondi-Hoyle regime.
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If we consider spherical coordinates (R, θ, φ) the three components of the
Euler equation and and the energy conservation can be written as:

ρ
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vR
∂vR
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Narayan and Yi (1995a) found the following self-similar solutions for these
equations:

vR = RΩK(R)v (θ) , (332)

vθ = 0, (333)

vφ = RΩK(R)Ω(θ), (334)

cs = RΩK(R)cs(θ), (335)

ρ = R−3/2ρ(θ). (336)

Two-temperature ADAF models are based in a series of hypothesis about
the thermodynamics of the accretion gas:
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Figure 33. Left: ADAF spectra from a 10M� black hole and different
accretion rates. Right: Thin disk spectra for the same accretion rates
and black hole.

• The total pressure has contributions from both the gas and the magnetic
field:

p = pg + pm. (337)

The magnetic pressure is:

pm =
B2

8π
, (338)

and the gas pressure, in the case of an ideal gas of density n and tempera-
ture T ,

pg = nkT. (339)

The firs hypothesis is that the magnetic pressure is a fixed fraction of the
gas pressure:

pm = (1− β) p, pg = βp. (340)

The value β = 0.5 corresponds to strict equipartition.

• A second hypothesis is that the temperature of ions and temperature of
electrons are different. Then, the gas pressure becoms:

pg = βρc2s =
ρ

μimH
kTi +

ρ

μemH
kTe, (341)

where mH is the hydrogen mass and μi,e the molecular weight of ions and
electrons, respectively.
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Figure 34. Geometry of the flux in different spectral states as a func-
tion of the accretion rate normalized in Eddington units (Esin et al.
1997).
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The radiation pressure is not considered since in flows dominated by ad-
vection is ussually negligible.

• There is a preferential heating of ions. Because of the large difference is
mass, it is assumed that the energy released by viscosity is transferred
to ions and just a small fraction δ � 1 goes to electrons. Usually, it is
assumed δ ∼ 10−3 ∼ me/mp. In such a case, the result will be Ti � Te,
where typically Ti ∼ 1012 K and Te ∼ 109 K. Even if both types of particles
receive the same amount of energy, electrons will cool more efficiently,
leading to Ti � Te in any case.

• ADAF models assume that there is no thermal coupling between iones and
electrons, and the only relevant interaction is Coulombian.

• The resulting spectrum of the ADAF will result from the operation of the
different cooling mechanisms. For electrons the most relevant mechanisms
are synchrotron radiation, Bremsstrahlung, and inverse Compton scatter-
ing:

Q−
e = Q−

Br +Q−
synchr +Q−

IC. (342)

Photons produced by Bremsstrahlung and synchrotron process can be up-
scattered by electrons, in addition to those coming from external fields.
Then, Q−

IC can be written as:

Q−
IC = Q−

IC,Br +Q−
IC,synchr +Q−

IC,ext. (343)

In the steady state the energy gained by the ions through the viscous heating
must be equal to the energy transferred to the electrons plus the advected energy:

Q+ = Qadv +Qie = fQ+ +Qie. (344)
This assumes that the ions have no radiative losses.

In Figure 35 we show a typical ADAF spectrum.
Recently, Romero, Vieyro and Vila (2010) have considered the effect of non-

thermal particle populations in the central region of ADAF-like systems. In
such a case relativistic protons cool by synchrotron, photo-pair, photo-meson
and inelastic proton-proton interactions. The full non-thermal spectrum can be
quite complicated. An example us shown in Figure 36 and the application to the
classic source Cygnus X-1 in Figure 36.

25.5. Accretion in binary systems

Zel’dovich (1964) was the first to suggest that black holes might be detected by
the emission due to accretion from a companion star in a binary system. There
are two basic process through which the black hole can capture the material from
the star: 1) production of gas jets by overflow of the Roche lobe in the case of
a normal star, 2) gravitational capture of matter forming the stellar wind of the
star. These winds are particularly strong in the case of massive, early-type stars.
In what follows we shall briefly review these modes of accretion (see Frank, Kind
and Raine 1992 for details).



94 Gustavo E. Romero

Figure 35. Different contribution to the total spectrum of an ADAF.

Figure 36. Non-thermal contributions to an ADAF/corona model
with a relativistic proton-to-electron energy density ration of 100.
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Figure 37. ADAF/corona model with non-thermal contribution for
Cygnus X-1. Different cases are considered, with different proton con-
tent.

Overflow of the Roche lobe

Let us consider a black hole of mass M• and a star of mass M∗ in a circular orbit.
In the plane of the orbit, the effective potential resulting from the gravitational
and centrifugal forces is (e.g. Lipunov 1992):

Φ = −GM∗
R1

− GM•
R2

+
Ω2(x2 + y2)

2
, (345)

where Ω is the angular velocity associated to the radius of the orbit a:

a =

[
G(M• +M∗)

Ω2

]1/3
, (346)

and R2
1 = x21 + y21, R2

2 = x22 + y22 indicate the distances of a particle to M∗ and
M•, respectively.

The total energy of the particle is:

Φ+
1

2
v2 = E0. (347)

For low energies, the particle, if emitted by the star, will fall back to it. At the
turning point its velocity will be v = 0. In such a case, Φ = E0. This equation
defines equipotential surfaces (Hill’s surfaces) that limit the motion of particles
of energy E0. At a certain energy ER = ΦR, the Hill’s surfaces of both masses
come in contact and form the so-called Roche lobe. The point of contact is the
inner Lagrangian point where the resultant of all forces equals zero:

dΦ

dx
= 0. (348)
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When the star fills its Roche lobe it injects matter over the black hole
through the inner Lagrangian point. There, a particle can go from one lobe
to the other without losing energy. The specific angular momentum lΩ of the
injected gas is related to the angular momentum of the orbital motion:

lΩ ≈ Ωa2. (349)

The thickness of the gas jet crossing the Lagrange point is ∼ 0.1 R∗. The flow
rate is determined by the state of evolution of the star and the ratio q =M•/M∗.
For q � 1, the flow occurs on a time scale

τ =
GM∗
R∗L∗

, (350)

where L∗ is the total luminosity of the star. Then, the matter flow rate is:

Ṁ =
M∗
τ
. (351)

The jet of gas collides with the outer part of the disk. Since the size of the
disk is of the order of the size of the Roche lobe, we can write the time the gas
takes to move along the whole disk as:

tR ≈ Rout

vR
≈ a

vr
≈ a

αvφ(H/R)2
≈≈ T

2πα

(
R

H

)2

, (352)

where we have used the standard thin disk solution and T is the orbital period.
Since for thin disks H � R and α < 1, the time scale of radial motion of matter
is longer than the orbital period:

tR
T

� 1. (353)

Accretion from stellar winds

The stellar wind of early-type stars is both strong (106 − 10−4 M� yr−1) and
supersonic. The wind velocity is:

vw ≈ vesc ≈
√

2GM∗
R∗

. (354)

For typical values this velocity will be of a few thousands km s−1, a highly
supersonic value since for the interstellar medium cs ∼ 10 km s−1. If the orbital
velocity of the black hole in the high-mass binary system is v•, the wind moves
forming an angle β = tan−1(v•/vw) with the symmetry axis of the bow shock.
The relative velocity is:

vrel = (v2• + v2w)
1/2. (355)

Gravitational capture of wind particles will occur within a cylindrical region
of radius

RG ∼ 2GM•
v2rel

. (356)
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Considering vw � v•, we have β = 0 and vrel = vw. Then, the fraction of
the stellar wind captured by the black hole is given by the ratio of the mass flux
into the accretion cylinder and the total mass loss rate of the star Ṁ∗:

Ṁ

Ṁ∗
≈ πR2

Gvw(a)

4πa2vw(a)
=

G2M2•
a2v4w(a)

, (357)

where a is the binary separation. Using the expression for RG:

Ṁ

Ṁ∗
≈ 1

4

(
M•
M∗

)2 (R∗
a

)2

. (358)

For typical values this implies accretion rates of 10−4 − 10−3 M∗. Thus, the
accretion from the stellar wind is far less efficient than the accretion by Roche
lobe overflow, where the efficiency is almost 1. However, since the mass loss rate
of the massive stars is so high, the resulting luminosity is observable. Typically:

Lacc = ηṀc2 ∼ 1037
(

Ṁ

10−4 Ṁ∗

)(
Ṁ∗

10−5 M� yr−1

)
erg s−1. (359)

Although the wind has no angular momentum if the star is a slow rotator,
a disk can be formed around the black hole because of the orbital motion. The
associated specific angular momentum is then

l =
1

4
R2

disk

(
v•
a

)
, (360)

where Rdisk is the radius of accretion disk. For short orbital periods (small a)
significant disks can be formed.

26. Jets

Jets are collimated flows of particles and electromagnetic fields. They are ob-
served in a wide variety of astrophysical systems, from protostars to Active
Galactic Nuclei (AGNs). Astrophysical jets seems to be associated with ac-
cretion onto a compact central object. The most remarkable property of jets is
that their length exceeds the size of the compact object by many orders of mag-
nitude. For instance, in AGNs the jets are generated in a region of no more than
100 gravitational radii of the central black hole (∼ 1015 cm), and propagate up
to distances of ∼ 1024 cm, well into the intergalactic medium. Along the jets, the
specific volume of plasma increases enormously and the corresponding adiabatic
losses, in combination with various radiative losses, ensure that the particles lose
essentially all their “thermal” energy very quickly. Yet, high-resolution radio and
X-ray observations show that the jet brightness does not decline so rapidly. This
suggests that most of the jet energy is in a different form and that the observed
emission is the results of its slow dissipation.

One possibility is that astrophysical jets are supersonic, kinetic energy-
dominated flows. A number of factors make the idea very attractive. First,
such flows do not require external support in order to preserve their collimation.
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Second, they are stable and can propagate up to large distances without signif-
icant energy losses, in an essentially ballistic regime. Third, when they interact
with the external medium the result is shock formation. These shocks dissipate
kinetic energy locally and thus can produce bright compact emission sites, like
the knots and hot spots of observed in astrophysical jets.

26.1. Acceleration

The current magnetic acceleration model for jets assumes that most of the jet
Poynting flux is first converted into bulk kinetic energy and then dissipated at
shocks (shocks in highly magnetized plasma are inefficient). The generation
of the jets is the result of magneto-centrifugal forces in the inner part of the
accretion disk (Blandford and Payne 1982). The rotating magnetic field lines
anchored in the disk can drive material from the through centrifugal forces if
the angle with the symmetry axis of the accretion disk is ≥ 60◦. This material
might be extracted from the tenuous region right below and above the disk
surface, the disk atmosphere or corona, where, because of matter dilution the
magnetic pressure becomes larger than the gas pressure. Provided the magnetic
field has the proper geometry, the material, of density ρ, will be pushed along
the magnetic lines due to the high conductivity of the plasma, suffering a force
along the field lines and accelerating up to a velocity of the order of the Alfvén
velocity vA = B/(4πρ)1/2, which in the disk surface is well above the sound speed
cs. At this point, the dynamics is again dominated by matter, magnetic lines
get bent, and magneto-centrifugal acceleration is quenched, but the material has
already reached a significant velocity. This outflow can be collimated by the
lateral pressure of matter and magnetic fields of the corona (the nozzle) forming
a jet. The origin of the energy of the jet is the accretion disk, not the magnetic
field. The matter loading, the final velocity, and the collimation degree of the
jet depend strongly on the conditions in the disk atmosphere.

The different regions in a magnetically accelerated outflow are indicated in
Figure 38 (Spruit 2010). The Alfvén radius is the point where the flow speed
equals the Alfvén speed.

The acceleration of the jet depends on the inclination of the field lines: there
is a net upward force along the field lines only if they are inclined outward at
a sufficient angle. Field lines more parallel to the axis do not accelerate a flow.
The conditions for collimation and acceleration thus conflict somewhat with each
other. Explanation of the very high degree of collimation observed in some jets
requires additional arguments (e.g. external confinement).

At the Alfvén radius the flow has reached a significant fraction of its terminal
velocity. The field lines start lagging behind, with the consequence that they get
‘wound up’ into a spiral. Beyond the Alfvén radius, the rotation rate of the flow
gradually vanishes by the tendency to conserve angular momentum, as the flow
continues to expand away from the axis (see Figure 39).

In Figure 40 we show a disk+jet system with the associated magnetic field.
In this case the magnetic tower formed by the field helps to confine the outflow.

At the beginning, the jet dynamics is dominated by the magnetic field (B).
In such a case, jet luminosity, assuming ideal plasma conditions, is given by the
Poynting flux:

Lj ≈ S = c/8πAj |E×B| = c/8π|(v × B)× B| , (361)
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Figure 38. Different regions in a magnetically accelerated outflow
from an accretion disk (from Spruit 2010).

Figure 39. Behavior field lines. Beyond the Alvén radius the field is
twisted into a spiral (from Spruit 2010).

where Aj is the jet section. When the jet is dominated by matter, the luminosity
becomes

Lj ≈ (Γj − 1)Aj ρj c
2 , (362)

where ρj is the mass density of the jet, Γj = 1/
√
1− (vj/c)2 is the bulk Lorentz

factor, and vj the jet’s velocity.
In case the magnetic field has not a dominant role, the jet evolution can be

described using hydrodynamical (HD) equations. Otherwise, a magnetohydro-
dynamical (MHD) treatment, or in some extreme cases a pure electromagnetic
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Figure 40. Jet, accretion disk, and black hole system. The magnetic
field geometry is shown.

(EM) one, is needed. Even when an MHD approach is suitable for a consistent
description of the flow, the main part of luminosity can still be carried by matter.

26.2. Collimation

The magnetic field in the jet is globally expansive, corresponding to the fact that
it represents a positive energy density. That is, a magnetic field can only exist
if there is an external agent to take up the stress it exerts.

Since magnetic jets do not collimate themselves, an external agent has to
be involved. A constraint can be derived from the observed opening angle θ∞.
Once the flow speed has a Lorentz factor Γ > 1/θ∞, the different directions in
the flow are out of causal contact, and the opening angle does not change any
more (at least not until the jet slows down again, for example by interaction with
its environment). Collimation must take place at a distance where the Lorentz
factor was still less than 1/θ∞.

Once on its way with a narrow opening angle, a relativistic jet needs no ex-
ternal forces to keep it collimated. Relativistic kinematics guarantees that it can
just continue ballistically, with unconstrained sideways expansion. This can be
seen in a number of different ways. One of them is the causality argument above,
alternatively with a Lorentz transformation. In a frame comoving with the jet
the sideways expansion is limited by the maximum sound speed of a relativistic
plasma, cs = c/

√
3. Since transversal to the flow, the apparent expansion rate in

a lab frame (a frame co-moving with the central engine) is reduced by a factor
Γ: the time dilatation effect. In the comoving frame, the same effect appears
as Lorentz contraction: the jet expands as quickly as it can, but distances to
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points long its path are reduced by a factor ęč (for example the distance to the
lobes: the place where jet is stopped by the interstellar medium). In AGNs, with
Lorentz factors of order ∼ 20, the jet cannot expand to an angle of more than
about a degree. This holds if the flow was initially collimated: it still requires
that a sufficiently effective collimating agent is present in the region where the
jet is accelerated. Comparisons of Lorentz factors and opening angles of AGN
jets might provide possible clues on this agent.

The agent responsible for collimation somehow must be connected with the
accretion disk (especially in microquasars where there is essentially nothing else
around). One possibility is that the observed jet is confined by a slower outflow
from the accretion disk.

Another possibility is that the collimation is due to an ordered magnetic
field kept in place by the disk: the field that launches the jet from the center
may may be part of a larger field configuration that extends, with declining
strength, to larger distances in disk (see Fig. 40). If the strength of this field
scales with the gas pressure in the disk, one finds that the field lines above
the disk naturally have a nearly perfectly collimating shape. The presence and
absence of well-defined jets at certain X-ray states would then be related to
the details of how ordered magnetic fields are accreted through the disk. Near
the compact object, the accretion can be in the form of an ion-supported flow
(with ion temperatures near virial) which is geometrically thick (H/R ∼ 1). Jets
launched in the central funnel of such a disk are confined by the surrounding
thick accretion flow. As shown by current numerical simulations, this can lead
to a fair degree of collimation, though collimation to angles of a few degrees and
less as observed in some sources will probably require an additional mechanism.
In addition, inverse Compton losses limit the maximum Lorentz factor to less
than 5.

26.3. Stability

Jets can be unstable under different conditions. In the collimation phase, the
jet has already a Bφ component that cannot be neglected dynamically. This
configuration is unstable to the kink-mode, among the different modes shown by
the instability affecting a magnetized (cylindrical) jet. The instability propagates
through the plasma at ∼ vA. If cs < vA, it can destroy the jet. Actually, jets
that are conical or with slow expansion will suffer eventually disruption due to
the kink-mode of the MHD instability. Jets that expand faster than conical, or
with very low magnetic fields (i.e. vA < cs), will be stable. The kink stability
is more likely to occur relatively close to the black hole, at ∼< 100 − 1000 Rsch,
since there Bφ is expected to be larger. At larger distances, jet acceleration (e.g.
Komissarov et al. 2007) will reduce Bφ down to values below equipartition with
matter pressure (i.e. vA < cs).

There are other ways to disrupt the jet. At some distance the external pres-
sure may become significant compared to the jet lateral ram (thermal+kinetic)
pressure. Note that outside the accretion disk atmosphere or the corona, the jet
is likely overdense and in overpressure compared with the external medium, but
expands and its total pressure decreases. Therefore, at the stage when the jet
thermal pressure becomes equal to the external pressure, a recollimation shock
generates. If this shock repeats few times or is strong enough, something that de-
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Figure 41. Propagation of a jet through the stellar wind in a massive
X-ray binary. Simulations by Perucho and Bosch-Ramon (2008).

pends on the initial pressure ratio, can lead to the disruption of the jet (Perucho
& Bosch-Ramon 2008). Also, when there is a strong velocity difference between
the external medium and the jet, Kelvin-Helmholtz instabilities can develop, dis-
torting and eventually destroying the jet (Romero 1995). Axial magnetic fields
can help to stabilize the jets against the perturbations.

26.4. Content and radiation

The jet can be dominated, in the sense of power, by a cold (thermal) p − e−-
plasma plus a small contribution of relativistic particles mixed with the outflow,
or by a pure relativistic e±-plasma. The former is expected to occur in hy-
drodynamic (HD) and magneto-hydrodynamic (MHD) jets (such jets are called
‘hadronic’ or ‘heavy’ jets), whereas the latter seems more likely to happen in
a electromagnetic (EM) jets ( pure ‘leptonic’ jets). Accretion loaded or black-
hole rotation powered jets with medium entrainment, can produce hadronic jets,
whereas black-hole rotation powered jets with a diluted medium could lead to
leptonic jets. These leptonic jets would consist basically of a powerful (colli-
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mated) electromagnetic wave carrying just some e± injected by pair creation at
the base of the jet.

In HD and low magnetization MHD jets, the particle kinetic energy associ-
ated with the motion in the jet direction (i.e. the bulk motion; eb = (Γj−1)mc2)
is expected to be much larger than the energy associated with jet expansion (i.e.
eexp ≈ mv2exp/2) and temperature (i.e. ekT = k T ). This implies strong collima-
tion, and a low sound (cs) or Alfven speed (vA) in the jet plasma compared to
the jet velocity, i.e. the jet will be strongly supersonic/superalfvenic. If this were
not the case, the jet could still be collimated by external pressure, but would be
difficult to keep it collimated on long distances. For jets with dynamics dom-
inated by the EM fields the temperature of the plasma could be very large as
long as collimation is satisfied, i.e. the external and magnetic pressure should
be well above the thermal pressure. Otherwise, the flow would be uncollimated.
The realization of the different situations may take place in each jet at differ-
ent stages of their evolution. The jet could be EM/leptonic at its very base,
MHD/hadronic through external medium entrainment at intermediate scales,
and HD at the largest scales after magnetic energy has gone to accelerate the
jet.

As long as jets are radiatively efficient, they will shine across the EM spec-
trum and could be detected, but when the conditions in the plasma are not
suitable for the production of significant radiation, they may keep dark all the
way to their termination regions. The radiation from jets can be thermal (contin-
uum and lines), although the detection of thermal jets is rare since the required
densities are high, and T and vj moderate. The detection of non-thermal ra-
diation from jets, mainly in the radio band, is more common. For that, it is
required that some particles will be accelerated up to relativistic energies, well
above k T , and at least the presence of magnetic field, since these are the in-
gredients of synchrotron emission. Efficient high-energy and very high-energy
emission is possible if the radiation and/or the matter fields are dense enough.
This radiation can be produced by inverse Compton scattering, when accelerated
leptons are present, or by proton-proton collisions, when accelerated hadrons are
present (e.g. Bosch-Ramon et al. 2006; Romero et al. 2003). For a compre-
hensive description, including particle transport, see Vila & Romero (2010) and
Reynoso et al. (2010).

27. Evidence for black holes in the universe

28. White holes and gravastars

The analytical extension of the Schwarzschild solution in Kruskal-Szekeres coor-
dinates shows a region that is singular and covered by an horizon but from where
geodesic lines emerge. Such an extension can be interpreted as a time-reversal
image of a black hole: the matter from an expanding cloud began to expand from
the horizon. Such space-time regions are known as white holes (Novikov 1964,
Ne’eman 1965). White holes cannot result from the collapse of physical objects
in the real Universe, but they could be imagined to be intrinsic features of space-
time. A white hole acts as a source that ejects matter from its event horizon.
The sign of the acceleration is invariant under time reversal, so both black and
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Figure 42. Embedding diagram representing a white hole.

white holes attract matter. The only potential difference between them is in the
behavior at the horizon. White hole horizons recede from any incoming matter
at the local speed of light, in such a way that the infalling matter never crosses
the horizon. The infalling matter is then scattered and re-emitted at the death
of the white hole, receding to infinity after having come close to the final singular
point where the white hole is destroyed. The total proper time until an infalling
object encounters the singular endpoint is the same as the proper time to be
swallowed by a black hole, so the white hole picture does not say what happens
to the infalling matter. In Figure 42 we show an embedding diagram of a white
hole.

The existence of white holes is doubtful since they are unstable. The insta-
bility of white holes results from both classical processes caused by the interaction
of the surrounding matter (Frolov 1974) and from processes of quantum particle
creation in the gravitational field of the holes (Zeldovich et al. 1974). The accre-
tion of matter into white holes causes the instability and converts them into black
holes. The reader is referred to Frolov & Novikov (1998) for a detailed discussion.
In addition, we notice that the entropy of a black hole is related to the horizon
area in Planck units, and this is the most entropy which a given region can con-
tain. When an object flies out of a white hole, the area of the horizon always
decreases by more than the maximum possible entropy that can be squeezed into
the object, which is a time-reversed statement of the Bekenstein bound17. White
holes, then, appear to violate the second law of thermodynamics.

A different type of hypothetical objects are Gravitational Vacuum Stars or
“gravastars”. Gravastars were first proposed by Mazur & Mottola (2001) as an
alternative to black holes. They are mathematically constructed as compact ob-
jects with an interior de Sitter condensate phase and an exterior Schwarzschild
geometry of arbitrary total mass M . These are separated by a phase boundary
with a small but finite thickness of fluid with equation of state p = +ρc2, replac-
ing both the Schwarzschild and de Sitter classical horizons. The interior region
has an equation of state p = −ρc2, in such a way that the energy conditions are

17The Bekenstein bound says that the maximum possible entropy of a black hole is S = A/4,
where A is the two-dimensional area of the black hole’s event horizon in units of the Planck
area.
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violated and the singularity theorems do not apply. The solution, then, has no
singularities and no event horizons. The system is sustained against collapse by
the negative pressure of the vacuum. The assumption required for this solution
to exist is that gravity undergoes a vacuum rearrangement phase transition in
the vicinity of r = rSchw. Recent theoretical work, however, has shown that
gravastars as well as other alternative black hole models are not stable when
they rotate (Cardoso et al. 2008). This can be interpreted as a “no go theorem”
for them.

29. Wormholes

A wormhole is a region of space-time with non-trivial topology. It has two
mouths connected by a throat (see Figure 43). The mouths are not hidden
by event horizons, as in the case of black holes, and, in addition, there is no
singularity to avoid the passage of particles, or travelers, from one side to the
other. Contrary to black holes, wormholes are holes in space-time, i.e. their
existence implies a multiple-connected space-time.

There are many types of wormhole solutions for the Einstein field equations
(see Visser 1996). Let us consider the static spherically symmetric line element,

ds2 = e2Φ(l)c2dt2 − dl2 − r(l)2dΩ2

where l is a proper radial distance that covers the entire range (−∞,∞). In
order to have a wormhole which is traversable in principle, we need to demand
that:

1. Φ(l) be finite everywhere, to be consistent with the absence of event hori-
zons.

2. In order for the spatial geometry to tend to an appropriate asymptotically
flat limit, it must happen that

lim
r→∞ r(l)/l = 1

and
lim
r→∞Φ(l) = Φ0 <∞.

The radius of the wormhole is defined by r0 = min{r(l)}, where we can set l = 0.
To consider wormholes which can be traversable in practice, we should in-

troduce additional engineering constraints. Notice that for simplicity we have
considered both asymptotic regions as interchangeable. This is the best choice
of coordinates for the study of wormhole geometries because calculations result
considerably simplified. In general, two patches are needed to cover the whole
range of l, but this is not noticed if both asymptotic regions are assumed similar.
The static line element is:

ds2 = e2Φ(r)c2dt2 − e2Λ(r)dr2 − r2dΩ2, (363)

where the redshift function Φ and the shape-like function e2Λ characterize the
wormhole topology. They must satisfy:
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1. e2Λ ≥ 0 throughout the space-time. This is required to ensure the finiteness
of the proper radial distance defined by dl = ± eΛ dr. The ± signs refer to
the two asymptotically flat regions which are connected by the wormhole
throat.

2. The precise definition of the wormhole’s throat (minimum radius, rth) en-
tails a vertical slope of the embedding surface

lim
r→r+

th

dz

dr
= lim

r→r+
th

±
√
e2Λ − 1 = ∞. (364)

3. As l → ±∞ (or equivalently, r → ∞), e2Λ → 1 and e2Φ → 1. This is the
asymptotic flatness condition on the wormhole space-time.

4. Φ(r) needs to be finite throughout the space-time to ensure the absence of
event horizons and singularities.

5. Finally, the flaring out condition, that asserts that the inverse of the em-
bedding function r(z) must satisfy d2r/dz2 > 0 at or near the throat.
Stated mathematically,

− Λ′ e−2Λ

(1− e−2Λ)2
> 0. (365)

This is equivalent to state that r(l) has a minimum.

Static wormhole structures as those described by the above metric require
that the average null energy condition must be violated in the wormhole throat.
From the metric coefficients can be established (e.g. Morris and Thorne 1988,
Visser 1996):

Gtt +Grr < 0, (366)

where Gtt and Grr are the time and radial components of the Einstein tensor:
Gμν = Rμν − 1

2gμνR.
This constraint can be cast in terms of the stress-energy tensor of the matter

threading the wormhole. Using the field equations, it reads

Ttt + Trr < 0, (367)

which represents a violation of the null energy condition. This implies also
a violation of the weak energy condition (see Visser 1996 for details). Plainly
stated, it means that the matter threading the wormhole must exert gravitational
repulsion in order to stay stable against collapse. Although there are known
violations to the energy conditions (e.g. the Casimir effect), it is far from clear at
present whether large macroscopic amounts of “exotic matter” exist in nature. If
natural wormholes exist in the universe (e.g. if the original topology after the Big-
Bang was multiply connected), then there should be observable electromagnetic
signatures (e.g. Torres et al. 1998). Currently, the observational data allow
to establish an upper bound on the total amount of exotic matter under the
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Figure 43. Embedding diagrams of wormholes. Adapted from Misner
et al. (1973).

form of wormholes of ∼ 10−36 g cm−3. The production of this kind of matter in
the laboratory is completely out of the current technical possibilities, at least in
significant macroscopic quantities.

A simple selection of Φ(r) and Λ(r) are (e.g. Morris and Thorne 1988, Hong
and Kim 2006) is:

Φ(r) =
1

2
ln

(
1− b(r)

r

)
, (368)

e2Λ(r) =

(
1− b(r)

r

)−1

, (369)

where
b(r) = b(r0) = const = B > 0. (370)

The wormhole shape function has a minimum at r = r0 where the exotic matter
is concentrated.

Another possibility is the so-called “absurdly benign” wormhole (Morris and
Thorne 1988):

b(r) = b0

[
1− (r − b0)

a0

]2
, Φ(r) = 0, for b0 ≤ r ≤ b0 + a0, (371)

b = Φ = 0, for r ≥ b0 + a0. (372)

Finally, we mention that a wormhole can be immediately transformed into
a time machine inducing a time-shift between the two mouths. This can be
made through relativistic motion of the mouths (a special relativity effect) or by
exposing one of them to an intense gravitational field (see Morris and Thorne
1988 and Morris et al. 1988 for further details; for the paradoxes of time travel,
see Romero and Torres 2001).

30. Closed time-like curves and time travel

Closed time-like curves (CTCs) are worldlines of any physical system in a tem-
porally orientable space-time which, moving always in the future direction, ends
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Figure 44. Embedding of a Lorentzian wormhole.

arriving back at some point of its own past. Although solutions of the Einstein
field equations where CTCs exist are known at least since Gödel’s (1949) origi-
nal work on rotating universes, it has been only since the last decade of the XX
Century that physicists have shown a strong and sustained interest on this topic.
The renewed attraction of CTCs and their physical implications stem from the
discovery, at the end of the 1980’s, of traversable wormhole space-times (Morris
et al. 1988).

Any space-time (M, gab) with CTCs is called a chronology-violating space-
time. There are two types of these space-times: those where CTCs exist ev-
erywhere (like, for instance, in Gödel space-time), and those where CTCs are
confined within some regions and there exists at least one region free of them.
The regions with CTCs are separated from the “well-behaved” space-time by
Cauchy horizons (wormhole space-times belong to this latter type). Here we
shall restrict the discussion to the second type of space-times

The existence of CTCs and the possibility of backward time travel have been
objected by several scientists championed by Hawking (1992), who proposed the
so-called chronology protection conjecture: the laws of physics are such that
the appearance of CTCs is never possible. The suggested mechanism to enforce
chronology protection is the back-reaction of vacuum polarization fluctuations:
when the renormalized energy-momentum tensor is fed back to the semi-classical
Einstein field equations, the back-reaction accumulates energy in such a way
that it may distort the space-time geometry so strongly as to form a singularity,
destroying the CTC at the very moment of its formation.

It has been argued, however, that quantum gravitational effects would cut
the divergence off saving the CTCs (Kim and Thorne 1991). By other hand, Li et
al. (1993) pointed out that the divergence of the energy-momentum tensor does
not prevent the formation of a CTC but is just a symptom that a full quantum
gravity theory must be applied: singularities, far from being physical entities that
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can act upon surrounding objects, are manifestations of the breakdown of the
gravitational theory. In any case, we cannot draw definitive conclusions with the
semi-classical tools at our disposal (see Earman 1995 for additional discussion).

But even if the energy-momentum tensor of vacuum polarization diverges at
the Cauchy horizon it is not necessarily implied that CTCs must be destroyed,
since the equations can be well-behaved in the region inside the horizon (Li et al.
1993). In particular, wormhole space-times could be stabilized against vacuum
fluctuations introducing reflecting boundaries between the wormhole mouths (Li
1994) or using several wormholes to create CTCs (Thorne 1992, Visser 1997).

Even Hawking has finally recognized that back-reaction does not necessarily
enforce chronology protection (Cassidy and Hawking 1998). Although the quest
for finding an effective mechanism to avoid CTCs continues, it is probable that
the definitive solution to the problem should wait until a complete theory of
quantum gravity can be formulated. In the meantime, the profound physical
consequences of time travel in General Relativity should be explored in order to
push this theory to its ultimate limits, to the region where the very foundations
of the theory must be revisited.

A different kind of objection to CTC formation is that they allow illogical
situations like the “grandfather” paradox18 which would be expressing that the
corresponding solutions of the field equations are “non-physical”. This is a com-
mon place and has been conveniently refuted by Earman (1995), among others
(see also Nahin 1999 and references therein). Grandfather-like paradoxes do not
imply illogical situations. In particular, they do not mean that local determinism
does not operate in chronology-violating space-times because it is always possible
to choose a neighborhood of any point of the manifold such that the equations
that represent the laws of physics have appropriate solutions. Past cannot be
changed (the space-time manifold is unique) but it can be causally affected from
the future, according to General Relativity. The grandfather paradox, as pointed
out by Earman 1995, is just a manifestation of the fact consistency constraints
must exist between the local and the global order of affairs in space-time. This
leads directly to the so-called Principle of Self-Consistency (PSC).

30.1. The Principle of Self-Consistency

In space-times with CTCs, past and future are no longer globally distinct. Events
on CTCs should causally influence each other along a time-loop in a self-adjusted,
consistent way in order to occur in the real universe. This has been stated by
Friedman et al. (1990) as a general principle of physics:

Principle of Self-Consistency: The only solutions to the laws of physics that
occur locally in the real universe are those which are globally self-consistent.

When applied to the grandfather paradox, the PSC says that the grandfa-
ther cannot be killed (a local action) because in the far future this would generate
an inconsistency with the global world line of the time traveler. Just consistent
histories can develop in the universe. An alternative way to formulate the PSC

18The grandfather paradox: A time traveler goes to his past and kills his young grandfather then
avoiding his own birth and, consequently, the time travel in which he killed his grandfather.
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is to state that (Earman 1995):

The laws of physics are such that any local solution of their equations that
represents a feature of the real universe must be extensible to a global solution.

The principle is not tautological or merely prescriptive, since it is clear that
local observations can provide information of the global structure of the world:
it is stated that there is a global-to-local order in the universe in such a way
that certain local actions are ruled out by the global properties of the space-time
manifold.

If the PSC is neither a tautological statement nor a methodological rule,
what is then its epistemological status? It has been suggested that it could be a
basic law of physics –in the same sense that the Einstein field equations are laws
of physics– (Earman 1995). This would imply that there is some “new physics"
behind the PSC. By other hand, Carlini et al. (1995) have proposed, on the basis
of some simple examples, that the PSC could be a consequence of the Principle
of Minimal Action. In this case, no new physics would be involved. Contrary to
these opinions, that see in the PSC a law statement, or at least a consequence
of law statements, we suggest that this principle actually is a metanomological
statement, like the Principle of General Covariance among others (see Bunge
1961 for a detailed discussion of metanomological statements). This means that
the reference class of the PSC is not formed by physical systems, but by laws of
physical systems. The usual laws are restrictions to the state space of physical
systems. Metanomological statements are laws of laws, i.e. restrictions on the
global network of laws that thread the universe. The requirement of consistency
constraints would then be pointing out the existence of deeper level super-laws,
which enforce the harmony between local and global affairs in space-time. Just
in this sense it is fair to say that “new physics" is implied.

30.2. Causal loops: Self-existent objects

Although the PSC eliminates grandfather-like paradoxes from chronology-violating
space-times, other highly perplexing situations remain. The most obscure of
these situations is the possibility of an ontology with self-existent objects. Let
us illustrate with an example what we understand by such an object:

Suppose that, in a space-time where CTCs exist, a time traveler takes a ride
on a time machine carrying a book with her. She goes back to the past, forgets
the book in -what will be- her laboratory, and returns to the future. The book
remains then hidden until the time traveler finds it just before starting her time
trip, carrying the book with her.

It is not hard to see that the primordial origin of the book remains a mystery.
Where does the book come from?. This puzzle has been previously mentioned
in philosophical literature by Nerlich (1981) and MacBeath (1982). Physicists,
instead, have not paid much attention to it, despite the interesting fact that
the described situation is apparently not excluded by the PSC: the local and
global structures of the loop are perfectly harmonious and there is no causality
violations. There is just a book never created, never printed, but, somehow,
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existing in space-time. It has been suggested (Nerlich 1981) that if CTCs exist,
then we are committed to accept an ontology of self-existing objects: they are
just out there, trapped in space-time. There is no sense in asking where they are
from. Even energy is conserved if we admit that the system to be considered is not
only the present time-slice of the manifold but rather the two slices connected by
the time loop: the energy removed from the present time (Mbookc

2) is deposited
in the past.

However, that the acceptance of such a bizarre ontology proceeds from an
incorrect application of the PSC. This principle is always discussed within the
context of General Relativity, although actually it should encompass all physical
laws. A fully correct formulation of the PSC should read laws of nature where in
the formulation given above it is said laws of physics. What should be demanded
is total consistency and not only consistency in the solutions of the Einstein
field equations. In particular, when thermodynamics is included in the analysis,
the loop of a self-existing objects becomes inconsistent because, due to entropic
degradation, the final and initial states of the object do not match (Romero &
Torres 2001). Moreover, even more strange paradoxes, related to human self-
reproduction like the amazing Jocasta paradox (Harrison 1979), can be proven
to be non-consistent when the laws of genetics are taken into account (see Nahin
1999 and references therein).

30.3. Information loops and the PSC

Consider the local light cone of a time traveler. There are three, and only three,
possible final destinations for a backwards time trip. The arrival point could be
a within the past light cone, b on the edge of it, or c elsewhere out of the cone.
In the case a the time traveler can transmit information at a velocity v ≤ c and
affect its own past. Information transmitted in case b that propagates at the
velocity of light, instead, will arrive at the very moment when the time travel
started. In case c, the information flux can only reach the future of the time
traveler. However, even in the last case, if more than one time machine are
available (for instance as in the situation known as a Roman ring, where there
are two wormholes in relative motion) the past might be affected by information
flux from the future. The conclusion, then, is that whatever the final destiny of
the time-traveler is, in principle, she could always affect her own past. Otherwise
stated, chronology-violating space-times generally admit information loops: they
cannot be excluded on the only basis of the PSC.

Although the PSC does not preclude that within chronology-violating re-
gions information steaming from the future can affect the past, it at least imposes
constraints on the way this can be done. In fact, any physical process causally
triggered by the backwards information flux must be consistent with the past
history of the universe. This means that if a time traveler goes back to his past
and tries, for instance, to communicate the contents of the theory of special
relativity to the scientific community before 1905, she will fail because at her
departure it was historically clear that the first paper on special relativity was
published by Albert Einstein in June 1905. The details of her failure will depend
on the details of her travel and attempt, in the same way that the details of
the failure of a perpetual motion machine depends on the approach used by the
imprudent inventor. All we can say a priori is that the laws of physics are such
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that these attempts cannot succeed and information cannot propagate arbitrar-
ily in space-time. It is precisely due to the PSC that we know that our past is
not significantly affected from the future: we know that till now, knowledge has
been generated by evolutionary processes, i.e. there is small room in history for
information loops. This does not necessarily mean that the same is valid for the
entire space-time.

31. The future of black holes

According to Eq. (255), an isolated black hole with M = 10 M� would have a
lifetime of more than 1066 yr. This is 56 orders of magnitude longer than the age
of the universe19. However, if the mass of the black hole is small, then it could
evaporate within the Hubble time. A primordial black hole, created by extremely
energetic collisions short after the Big Bang, should have a mass of at least 1015
g in order to exist today. Less massive black holes must have already evaporated.
What happens when a black hole losses its mass so it cannot sustain an event
horizon anymore?. As the black hole evaporates, its temperature raises. When
it is cold, it radiates low energy photons. When the temperature increases, more
and more energetic particles will be emitted. At some point gamma rays would
be produced. If there is a population of primordial black holes, their radiation
should contribute to the diffuse gamma-ray background. This background seems
to be dominated by the contribution of unresolved Active Galactic Nuclei and
current observations indicate that if there were primordial black holes their mass
density should be less than 10−8 Ω, where Ω is the cosmological density param-
eter (∼ 1). After producing gamma rays, the mini black hole would produce
leptons, quarks, and super-symmetric particles, if they exist. At the end the
black hole would have a quantum size and the final remnant will depend on the
details of how gravity behaves at Planck scales. The final product might be a
stable, microscopic object with a mass close to the Planck mass. Such particles
might contribute to the dark matter present in the Galaxy and in other galaxies
and clusters. The cross-section of black hole relics is extremely small: 10−66

cm2 (Frolov and Novikov 1998), hence they would be basically non-interacting
particles.

A different possibility, advocated by Hawking (1976), is that, as a result of
the evaporation nothing is left behind: all the energy is radiated. This creates
a puzzle about the fate of the information stored in the black hole: is it radi-
ated away during the black hole lifetime or does it simply disappear from the
universe?.

Actually, the very question is likely meaningless: information is not a prop-
erty of physical systems. Information is a property of languages, and languages
are human constructs. The physical property usually confused with information
is entropy. The reason is that a same mathematical formalism can be used to
describe both properties. Of course, this does not mean that these quite differ-
ent properties are identical. Black holes, as we have seen, have huge entropy. Is

19We assume that the universe originated at the Big Bang, although, of course, this needs not
to be necessarily the case.
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entropy of the universe decreasing when a black hole evaporates?. I think that
the answer is the same one given by Bekenstein and already mentioned: the total
generalized entropy never decreases. The entropy of the universe was increasing
due to the black hole evaporation through a simple process of thermalization.
The disappearance of the horizon is simply the end of such a process. Informa-
tion is related to our capability of describing the process through a mathematical
language, not to the process itself.

Independently of the problem of mini black hole relics, it is clear that the
fate of stellar-mass and supermassive black holes is related to fate of the whole
universe. In an ever expanding universe or in an accelerating universe as it
seems to be our actual universe, the fate of the black holes will depend on the
acceleration rate. The local physics of the black hole is related to the cosmic
expansion through the cosmological scale factor a(t), which is an arbitrary (pos-
itive) function of the co-moving time t. A Schwarzschild black hole embedded in
a Friedmann-Robertson-Walker universe can be represented by a generalization
of the McVittie metric (e.g. Gao et al. 2008):

ds2 =

[
1− 2GM(t)

a(t)c2r

]2
[
1 + 2GM(t)

a(t)c2r

]2 c2dt2 − a(t)2
[
1 +

2GM(t)

a(t)c2r

]4
(dr2 + r2dΩ2). (373)

Assuming that M(t) = M0a(t), with M0 a constant, the above metric can
be used to study the evolution of the black hole as the universe expands. It is
usual to adopt an equation of state for the cosmic fluid given by P = ωρc2, with
ω constant. For ω < −1 the universe accelerates its expansion in such a way
that the scale factor diverges in a finite time. This time is known as the Big Rip.
If ω = −1.5, then the Big Rip will occur in 35 Gyr. The event horizon of the
black hole and the cosmic apparent horizon will coincide for some time t < tRip

and then the singularity inside the black hole would be visible to observers in
the universe. Unfortunately for curious observers, Schwarzschild black holes
surely do not exist in nature, since all astrophysical bodies have some angular
momentum and is reasonable then to expect only Kerr black holes to exist in the
universe. Equation (373) does not describe a cosmological embedded Kerr black
hole. Although no detailed calculations exist for such a case, we can speculate
that the observer would be allowed to have a look at the second horizon of the
Kerr black hole before being ripped apart along with the rest of the cosmos. A
rather dark view for the Doomsday.

32. Conclusions

Altogether, it is surely darker than you think20.
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Appendix A.1. Manifolds and topology

Appendix A.2. General definition of space-time

Appendix A.3. The anisotropy of time

The electromagnetic radiation can be described in the terms of the 4-potential
Aμ, which in the Lorentz gauge satisfies:

∂ν∂νA
μ(�r, t) = 4πjμ(�r, t), (374)

with c = 1 and jμ the 4-current. With appropriate boundary conditions is
possible to write Aμ as a functional of the sources jμ. The retarded and advanced
solutions are:

Aμ
ret(�r, t) =

∫ jμ
(
�r, t−

∣∣∣�r − �r′
∣∣∣)∣∣∣�r − �r′

∣∣∣ d3�r′, (375)

Aμ
adv(�r, t) =

∫ jμ
(
�r, t+

∣∣∣�r − �r′
∣∣∣)∣∣∣�r − �r′

∣∣∣ d3�r′. (376)

The two functionals of jμ(�r, t) are related to one another by a time reversal
transformation. The solution (375) is contributed by all sources in the causal
past of the space-time point (�r, t) and the solution (375) by all the sources in
the causal future of that point. The linear combinations of these solutions are
also solutions, since the equations are linear and the Principle of Superposition
holds. It is usual to consider only the retarded potential as physical meaningful
in order to estimate the electromagnetic field at (�r, t): Fμν

ret = ∂μAν
ret − ∂νAμ

ret.
However, there seems to be no compelling reason for such a choice. We can
adopt, for instance, (in what follows we use a simplified notation and boundary
conditions such as the surface contribution is zero):

Aμ(�r, t) =
1

2

∫
V
(adv + ret) dV. (377)

If the space-time is curve (R �= 0), the null cones that determines the local
causal structure will not be symmetric around the point p (�r, t). Then,

Lμ = lim
V→∞

[∫
V
ret−

∫
V
adv

]
dV �= 0. (378)

If gμνLμT ν �= 0, with T ν = (1, 0, 0, 0) there is a preferred direction for flow of
the Poynting flux in space-time. In a black hole interior this direction is towards
the singularity. In an expanding Universe, it is in the global future direction.
We see, then, that time, in a general space-time (M,gab), is anisotropic. There
is a global to local relation given by the Poynting flux as determined by the cur-
vature of space-time that indicates the direction in which events occur. Physical
processes, inside a black hole, have a different orientation that outside, and the
causal structure of the world is determined by the dynamics of space-time and
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the initial conditions. Macroscopic irreversibility21 and time anisotropy emerge
from essentially reversible laws. For additional details see Romero (2010).

Appendix A.4. The ontology of the world

The ontology is the part of metaphysics that deals with the most general features
of the world. It essentially provides theories about the structure and basic con-
tents of the world. These theories are presupposed by physical theories, which are
concerned with the detailed laws and specific characteristics of whatever exists.

The concept of individual is the basic primitive concept of any ontological
theory. Individuals associate themselves with other individuals to yield new
individuals. It follows that they satisfy a calculus, and that they are rigorously
characterized only through the laws of such calculus. These laws are set with the
aim of reproducing the way real things associate. Specifically, it is postulated
that every individual is an element of a set S in such a way that the structure
S =< S, ◦,� > is a commutative monoid of idempotents. In the structure S, S
is to be interpreted as the set of all the individuals, the element � ∈ S as the
null individual, and the binary operation ◦ as the association of individuals. It
is easy to see that there are two classes of individuals: simple and composed.

D1 x ∈ S is composed ⇔ ∃ y, z ∈ S/x = y ◦ z.
D2 x ∈ S is simple ⇔¬ ∃ y, z ∈ S/x = y ◦ z.
D3 x � y ⇔ x ◦ y = y ( x is part of y ⇔ x ◦ y = y).

D4 C(x) ≡ {y ∈ S/y � x} (composition of x).

Real things differentiate from abstract individuals because they have a num-
ber of properties in addition to their capability of association. These properties
can be intrinsic (Pi) or relational (Pr). The intrinsic properties are inherent
and they are represented by predicates or unary applications, while relational
properties are represented by n-ary predicates, with n>1, as long as nonconcep-
tual arguments are considered. For instance, the position and the velocity of a
particle are relational properties, but its charge is an intrinsic property.

P is called a substantial property if and only if some individual x possesses
P :

D5 P ∈ P ⇔ (∃x)(x ∈ S ∧ Px).
Here P is the set of all the substantial properties. The set of the properties of a
given individual x is

D6 P (x) ≡ {P ∈ P/Px}.

21Notice that the electromagnetic flux is related with the macroscopic concept of temperature
through the Stefan-Boltzmann law: L = AσSBT

4, where σSB = 5.670400 × 10−8J s−1m−2K−4

is the StefanŰBoltzmann constant.
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If two individuals have exactly the same properties they are the same:
∀ x, y ∈ S if P (x) = P (y) ⇒ x ≡ y. Two individuals are identical if their
intrinsic properties are the same: x id↔ y ( they can differ only in their relational
properties).

A detailed account of the theory of properties is given in Bunge (1977). We
only give here two useful definitions:

D7 P is an inherited property of x⇔ P ∈ P (x)∧ (∃y)(y ∈ C(x)∧ y �= x∧P ∈
P (y)).

D8 P is an emergent property of x ⇔ P ∈ P (x) ∧ ( (∀ y)C(x)(y �= x ) ⇒ P /∈
P (y) ).

According to these definitions, mass is an inherited property and viscosity is an
emergent property of a classical fluid.

An individual with its properties make up a thing X:

D9 X
Df
=< x,P (x) >.

The laws of association of things follow from those of the individuals. The
association of all things is the Universe (σU ). It should not be confused with the
set of all things; this is only an abstract entity and not a thing.

Given a thing X =< x,P (x) >, a conceptual object named model Xm of
the thing X can be constructed by a nonempty set M and a finite sequence F of
mathematical functions over M , each of them formally representing a property
of x:

D10 Xm
Df
=< M,F >, where F =< F1, . . . ,Fn > /Fi : M → Vi, 1 ≤ i ≤ n, Vi

vector space ,Fi =̂ Pi ∈ P (x).

It is said then that Xm represents X: Xm=̂X (Bunge 1977).
The state of the thing X can be characterized as follows:

D11 Let X be a thing with model Xm =< M,F >, such that each component
of the function

F =< F1, . . . ,Fn >:M → V1 × . . .× Vn.

represents some P ∈ P (x). Then Fi (1 ≤ i ≤ n) is named i-th state
function of X, F is the total state function of X, and the value of F for
some m ∈ M, F(m), represents the state of X at m in the representation
Xm.

If all the Vi, 1 ≤ i ≤ n, are vector spaces, F is the state vector of X in the
representation Xm, and V = V1 × . . . × Vn is the state space of X in the
representation Xm.

The concept of physical law can be introduced as follows:

D12 Let Xm =< X,F > be a model for X. Any restriction on the possible
values of the components of F and any relation between two or more of
them is a physical law if and only if it belongs to a consistent theory of the
X and has been satisfactorily confirmed by the experiment.



Black hole astrophysics 117

We say that a thing X acts on a thing Y if X modifies the path of Y in its
space state (X � Y : X acts on Y ).

We say that two things X and Y are connected if at least one of them acts
on the other. We come at last to the definition of system:

D13 A system is a thing composed by at least two connected things.

In particular, a physical system is a system ruled by physical laws. A set of things
is not a system, because a system is a physical entity and not a set. A system
may posses emergent properties with respect to the component subsystems. The
composition of the system σ with respect to a class A of things is (at the instant
t):

CA(σ, t) = {X ∈ A/X � σ}.
D14 σA(σ, t) = {X ∈ A/X �∈ CA(σ, t) ∧ (∃Y )CA(σ,t) ∧ (X � Y ∨ Y �X) )} is the

A-environment of σ at t.

If σA(σ, t) = ∅ ⇒ σ is closed at the instant t. In any other case we say that it is
open.

A specific physical system will be characterized by making explicit its space
of physical states. This is done in the axiomatic basis of the physical theory (e.g.
Perez-Bergliaffa et al. 1993, 1996).

Appendix A.5. Annotated bibliography on black holes

References

Abramowicz, M.A., et al. 1996, A&A, 313, 334
Araudo, A.T., Bosch-Ramon, V., and Romero, G.E. 2009, A&A, 503, 673
Arcos, H.I., and Pereira, J.G. 2004, Int. J. Mod. Phys. D13, 2193
Arkani-Hamed, N., Dimopoulos, S., and Dvali, G.R. 1998, Phys. Lett B., 429,

263
Baade, W., and Zwicky, F. 1934, Phys. Rev., 45, 138
Begelman M., and Meier D.L. 1982, ApJ, 253, 873
Bekenstein, J.D. 1973, Phys. Rev. D7, 2333
Blandford, R.D., and Znajek, R.L. 1977, MNRAS, 179, 433
Blandford, R. D., and Payne, D. G. 1982, MNRAS, 199, 883
Bondi, H., and Hoyle, F. 1944, MNRAS, 104, 203
Bondi, H. 1952, MNRAS, 112, 195
Born, M., and Infeld, L. 1934, Proc. R. Soc. London, A 144, 425
Bosch-Ramon, V., Romero, and G E., Paredes, J. M. 2006, A&A, 447, 263
Brans, C.H., and Dicke, R.H. 1961, Phys. Rev., 124, 925
Brown, G.B., et al. 1999, Physics Reports, 333, 471
Bunge, M. 1961, Am. J. Phys., 29, 518
Bunge, M. 1977, Ontology I: The Furniture of the World, Kluwer, Dordrecht
Cardoso, V., et al. 2008, Phys.Rev.D, 77, id. 124044



118 Gustavo E. Romero

Carlini, A., et al. 1995, Int. J. Mod. Phys. D, 4, 557
Carroll, S. 2003, Space-time and Geometry: An Introduction to General Rela-

tivity, Addison-Wesley, New York
Cassidy, M. J., and Hawking, S. W. 1998, Phys. Rev. D, 57, 2372
Chandrasekhar, S. 1931, ApJ, 74, 81
Chandrasekhar, S. 1939, in: Novae and White Dwarfs, Herman and Cie (eds.),

Paris
Clarke, C.J.S. 1993, The Analysis of Space-Time Singularities, Cambridge Uni-

versity Press, Cambridge
Corry, L, Renn, J., and Stachel, J. 1997, Science, 278, 1270
Droz, S. 1997, Phys. Rev. D, 55, 3575
Earman, J. 1995, Bangs, Crunches, Whimpers, and Shrieks: Singularities and

Acausalities in Relativistic space-times, Oxford University Press, New
York.

Eddington, A.S. 1926, The Internal Constitution of Stars, Cambridge University
Press, Cambridge

Einstein, A. 1905, Annalen der Physik, 17, 891
Einstein, A. 1907, Jahrb. Rad. Elektr., 4, 411
Einstein, A. 1915, Preussische Akademie der Wissenschaften, p.844
Einstein, A. 1916, Preussische Akademie der Wissenschaften, p.688
Einstein, A. 1918, Preussische Akademie der Wissenschaften, p.154
Esin A.A., McClintock J.E. and Narayan R. 1997, ApJ, 489, 865
Foglizzo, T., Galletti, P., and Ruffert, M. 2005, A&A, 435, 397
Frank, J., King, A., and Raine, D. 1992, Accretion Power in Astrophysics, Cam-

bridge University Press, Cambridge
Friedman, J.L., et al. 1990, Phys. Rev. D, 42, 1915
Frolov, V.P. 1974, Zh. Eskp. Teor. Fiz., 66, 813
Frolov, V.P., Markov, M.A., and Mukhanov, V.F. 1990, Phys. Rev. D 41, 383
Frolov, V.P., and Novikov, I.D. 1998, Black Hole Physics, Kluwer, Dordrecht
Gao, C., et al. 2008, Phys. Rev. D, 78, id. 024008
Gödel, K. 1949, Rev. Mod. Phys., 21, 447
Grünbaum, A. 1973, Philosophical Problems of Space and Time, 2nd Edition,

Kluwer, Dordrecht
Harrison, J. 1979, Analysis, 39, 65
Hawking, S.W. 1967, Proc. R. Soc. London A, 300, 187
Hawking, S.W. 1974, Nature, 248, 30
Hawking, S.W. 1976, Phys. Rev. D 14, 2460
Hawking, S. W. 1992, Phys. Rev. D, 46, 603
Hawking, S. W., and Penrose, R. 1970, Proc. R. Soc. London A, 314, 529
Hawking, S.W., and Ellis, G.F.R. 1973, The Large-Scale Structure of Space-

Time, Cambridge University Press, Cambridge
Hilbert, D. 1915, Goett. Nachr., p. 395



Black hole astrophysics 119

Hobson, H.P., Efstathiou, G., and Lasenby, A.N. 2007, General Relativity, Cam-
bridge University Press, Cambridge

Hoffmann, B. 1935, Phys. Rev., 47, 877
Hong, S. -T., and Kim, S. -W. 2006, Mod. Phys. Lett. A 21, 789
Hoyle, F., and Lyttleton, R.A. 1939, Proc. Cambr. Phil. Soc., 35, 592
Kaluza, T. 1921, Preussische Akademie der Wissenschaften, p.966
Kim, S. -W. and Thorne, K. S. 1991, Phys. Rev. D, 43, 3929
Klein, O. 1926, Zeits. Phys., 37, 895
Kerr, R.P. 1963, Phys. Rev. Lett., 11, 237
Koide, S., Shibata, K., and Kudoh, T. 1999, ApJ, 522, 727
Koide, S 2004, ApJ, 606, L45
Komissarov, S.S. 2004, MNRAS, 350, 427
Komissarov, S. S., Barkov, M. V., Vlahakis, N., and Königl, A. 2007, MNRAS,

380, 51
Landau, L.D. and Lifshitz, E.M. 1962, The Classical Theory of Fields, Pergamon

Press, Oxford
Lang, K.R. 1999, Astrophysical Formulae, Vol. 1, Springer, Berlin
Laplace, P.-S. 1796, Exposition du Système du Monde, Paris (first edition)
Lewis, D. 1976, Am. Phil. Quat., 13, 145
Li, L., -X. 1994, Phys. Rev. D, 50, R6037
Li, L. -X., Xu, J. -M, Liu, L. 1993, Phys. Rev. D, 48, 4735
Lipunov, V.M. 1992, Astrophysics of Neutron Stars, Springer-Verlag, Berlin-

Heidelberg
Lorentz, H.A. 1900, Proc. K. Ak. Amsterdam, 8, 603
Luminet, J-P. 1998, in: F.W. Hehl, C. Kiefer, & R.J.K. Metzler (Eds.), Black

Holes: Theory and Observation, Springer, Berlin-Heidelberg, pp. 3-34
Maartens, R. 2004, Living Reviews in Relativity, vol. 7, no. 7
Manko, V. S. and Sibgatullin, N. R. 1992, Phys. Rev. D., 46, R4122
Mazur, P.O. and Motolla, E. 2001, arXiv:gr-qc/0109035v5
MacBeath, M. 1982, Synthese, 51, 397
Michell, J. 1784, Phil. Trans. R. Soc. (London), 74, 35
Minkowski, H. 1907, lecture delivered before the Math. Ges. Goett. on Nov.

5th, 1907
Minkowski, H. 1909, Lecture “Raum und Zeit, 80th Versammlung Deutscher

Naturforscher (Köln, 1908)", Physikalische Zeitschrift 10: 75Ű88
Misner, C.W., Thorne, K.S., & Wheeler, J.A. 1973, Gravitation, W.H. Freeman

and company, San Francisco
Morris, M.S. and Thorne, K.S. 1988, Am. J. Phys., 56, 395
Morris, M. S., Thorne, K. S. and Yurtsever, U. 1988, Phys. Rev. Lett., 61, 1446
Nahin, P. J. 1999, Time Machines: Time Travel in Physics, Metaphysics and

Science Fiction, Springer-Verlag and AIP Press, New York.
Narayan, R., and Yi, I. 1994a, ApJ, 428, L13



120 Gustavo E. Romero

Narayan R. and Yi I. 1994b, ApJ, 490, 605
Narayan R. and Yi I. 1995a, ApJ, 444, 231
Narayan R. and Yi I. 1995b, ApJ, 452, 710
Ne’eman, Y. 1965, ApJ, 141, 1303
Nerlich, G. 1981, Pac. Phil. Quat., 62, 227
Newman, E. et al. 1965, Journal of Mathematical Physics, 6, 918
Nordstrøm, G. 1914, Zeits. Phys., 15, 504
Novikov, I.D. 1964, Astron. Zh., 43, 911
Okazaki, A.T., Romero, G.E., and Owocki, S.P. 2009, ESA-SP, in press
Oppenheimer, J.R., and Volkoff, G.M. 1939, Phys. Rev., 55, 374
Oppenheimer, J.R., and Snyder, H. 1939, Phys. Rev., 56, 455
Paczyński, B., and Wiita, P. 1980, A&A, 88, 23
Pais, A. 1982, “Subtle is the Lord...” The Science and Life of Albert Einstein,

Oxford University Press, Oxford
Pekeris, C.L., and Frankowski, K. 1987, Phys. Rev. A, 36, 5118
Penrose, R. 1969, Riv. Nuovo Cimento Ser. I, vol. 1., Numero Speciale, 252
Penrose, R. 1979, in: General Relativity, S.W. Hawking and W. Israel (eds.),

Cambridge University Press, Cambridge, p. 581
Perez-Bergliaffa, S.E., Romero, G.E., and Vucetich, H. 1993, Int. J. Theor.

Phys. 32, 1507
Perez-Bergliaffa, S.E., Romero, G.E., and Vucetich, H. 1996, Int. J. Theor.

Phys. 35, 1805
Perez-Bergliaffa, S.E., Romero, G.E., and Vucetich, H. 1998, Int. J. Theor.

Phys. 37, 2281
Perlmutter, S. et al. 1999, ApJ, 517, 565
Perucho, M., and Bosch-Ramon, V. 2008, A&A, 482, 917
Poincaré, H. 1905, C. R. Ac. Sci. Paris, 140, 1504
Poisson, E., and Israel, W. 1990, Phys. Rev. D, 41, 1796
Punsly, B. 1998a, ApJ, 498, 640
Punsly, B. 1998, ApJ, 498, 641
Punsly, B., et al., 2000, A&A, 364, 552
Punsly, B. 2001, Black Hole Gravitohydromagnetics, Springer, Berlin
Punsly, B., and Coroniti, F.V. 1990a, ApJ, 350, 518
Punsly, B., and Coroniti, F.V. 1990b, ApJ, 354, 583
Raine, D., and Thomas, E. 2005, Black Holes: An Introduction, Imperial College

Press, London
Randall, L. and Sundrum, R. 1999, Physical Review Letters, 83, 3370
Rees, M. 1984, ARA&A, 22, 471
Reynoso, M.M., Medina, M.C., and Romero, G.E., 2010, A&A, submitted,

arXiv:1005.3025
Romero, G.E. 1995, Ap&SS 234, 49
Romero, G.E., and Torres, D.F. 2001, Mod. Phys. Lett. A, 16, 1213



Black hole astrophysics 121

Romero, G. E., Torres, D. F., Kaufman Bernadó, M. M., and Mirabel, I. F.,
2003, A&A, 410, L1

Romero, G.E. 2010, The Anisotropy of Time and the Dynamics of the Universe,
BAAA, 52, 389

Schwarzschild, K. 1916, Sitzungsber. Preuss. Akad. D. Wiss., p.189
Shakura, N.I. 1972, Astron. Zh., 49, 921
Shakura, N.I., and Sunyaev, R.A. 1973, A&A, 24, 337
Shakura, N.I., and Sunyaev, R.A. 1976, MNRAS, 175, 613
Shapiro S.L., Lightman A.P & Eardley D.M. 1976, ApJ, 204, 187
Semerák, O., and Karas, V. 1999, A&A, 343, 325
Spruit, H.C. 2010, Lect. Notes Phys., 794, 233
Thorne, K.S. 1992, in: General Relativity and Gravitation 1992, Gleiser, J. L.,

et al. eds., Institute of Physics, Bristol
Thorne, K.S., Price, R.H., and Macdonald, D.A. 1986, The Membrane Paradigm,

Yale University Press, New Heaven, CT
Torres, D. F., Romero, G. E. and Anchordoqui, L. A. 1998, Physical Review,

D58, 123001
Townsend, P.K. 1997, Black Holes (lecture notes), University of Cambridge,

arXiv:gr-qc/9707012
Vila, G.S., and Romero, G.E. 2010, MNRAS, 403, 1457
Visser, M. 1996, Lorentzian Wormholes, AIP Press, New York
Visser, M. 1997, Phys. Rev. D, 55, 5212
Wald, R.M. 1984, General Relativity, University of Chicago Press, Chicago
Weinberg, S. 1972, Gravitation and Cosmology: Principles and Applications of

the General Theory of Relativity, Wiley and Sons, New York
Whisker, R. 2006, Braneworld Black Holes, PhD Thesis, University of Durham,

Durham
Yurtsever, Y. 1993, Class. Quantum. Grav., 10, L17
Zeldovich, Y.A. 1964, Dokl. Akad. Nauk USSR, 155, 67
Zeldovich, Y.A., and Novikov, I.D. 1971, Stars and Relativity, Dover, New York
Zeldovich, Y.A., Novikov, I.D., and Starobinsky, A.A. 1974, Zh. Eskp. Teor.

Fiz., 66, 1897


