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Black stars procured frem Obfervatiess, oy would be fartler weceflary f
that Puwpsfe. By the Rev. John Michell, B. D. F.R.S.

etter t3 Henry Cavendith, Efg. F.R. 8. and 4. S.

P.S. Laplace J. Michell

No equation of state for matter at such densities:

wrong picture!



A black star 1s not a black hole!

S0, what is a black hole?




“The views of space and time which I wish to lay before you
have sprung from the soil of experimental physics, and
therein lies their strength. They are radical. Henceforth space
by itself, and time by itself, are doomed to fade away into

mere shadows, and only a kind of union of the two will
preserve an independent reality.”

H. Minkowski, Koln, September 215, 1908
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What 1s spacetime?

Spacetime is the system of all events.

How can we represent spacetime?

Spacetime can be represented by a differentiable,
4-dimensional, real manifold.






Topological space

Let X be any setand T = {Xg} a collection, finite or infinite, of subsets of X. Then
(X, T) for a topological space 1ff:

. XeT.

1

2.0eT.

3. Any finite or infinite sub-collection {X),X5,..., X} } of the X 1s such that J]X; €
T

4. Any finite sub-collection {X),X>,...,X,} of the Xy 1s such that (] X; € T.

The set X 1s called a topological space and the X, are called open sets. The
assignation of T to X 1s said to “give " a topology to X .

A function f mapping from the topological space X onto the topological space
X* 1s continuous if the inverse image of an open set in X* 1s an open set n X.




Differentiable manifold

A differentiable manifold 1s a topological manifold
equipped with an equivalence class of atlases whose
transition maps are all differentiable.

A smooth manifold or C*-manifold 1s a differentiable
manifold for which all the transition maps are smooth.
That 1s, derivatives of all orders exist.



Manifold

A set M 1s a differentiable manifold if:

. M 1s a topological space.

. M 1s equipped with a family of pairs {(My, @«)}-

. The My's are a family of open sets that cover M: M = | J,My. The @4 's are
homeomorphisms from M to open subsets Oy of R": @y : My — Oy .

4. Given M, and My such that M, "Mz # 0. the ma o@;! from the subset
B B P ¢ 0Pq
@Pa(MgNMpg) of R™ to the subset @g (Mg N Mg) of R” 1s nfinitely differentiable
(C™).

A manifold M 1s said to be Hausdorff if for any two distinct elements x € M and
y € M. there exist Oy C M and Oy C M such that O, N Oy = 0.




A differentiable manifold 1s a type of manifold that is locally similar
enough to a linear space as to allow to do calculus.

If the charts are suitably compatible (namely, the transition from
one chart to another 1s differentiable), then computations done in
one chart are valid in any other differentiable chart.

A homeomorphism or topological isomorphism or bi continuous
function 1s a continuous function between topological spaces that
has a continuous inverse function.



Objects on the manifold

contravariant

8o Ozt 9o

oz Oz Oxt



Objects on the manifold

{zt} — {2*} =

Tensor field




Spacetime: metric

We need to know how to measure distances over a manifold. These distances are
the intrinsic separation between events of spacetime. We do this introducing a
metric tensor. Spacetime, then, is represented by an order pair (M, g), where g 1s
the metric tensor.

Euclidean metric

Interval

Minkowski metric



Minkowski Spacetime

Minkowski metric
tensor

Interval

Proper time




Minkowski Spacetime

There 1s a partial ordering of events. Simultaneity is not absolute
In spacetime

for ds® > 0, the interval i1s timelike:

for ds* = 0, the interval is null or lightlike;

for ds* < 0, the interval is spacelike.




Light cones
















Particle horizon

B never sees A

after this event ~__ |

The worldline of a uniformly accelerated particle B starting from
rest from the origin of S. If an observer A remains at x = (), then the worldline
of A is simply the r-axis. No message sent by A after 1t = ¢/ f will ever reach B.
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More general space



The coordinate basis vectors e, at a point P in a manifold are the
tangent vectors to the coordinate curves in the manifold and form a basis for the
tangent space at P.




Tetrads: othogonal unit vector fields
Let us consider a scalar product

vew = (V"€,) @ (WE,) = (€4 @ €)W = g’

where .
_ ) as
(‘“ — ]llll - .
ark —0 OTH
and we have defined

F;t‘l') . '(-.I'(I) = _‘lul'(‘-r)-
Similarly,
é'(r)eé’(z) = ¢ (x).

We call €, a coordinate basis vector or a tetrad. 4§ is an infinitesimal
displacement vector between a point P on the manifold (see Fig. 2) and a nearby
point Q whose coordinate separation is dz* along the »* coordinate curve. €, is
the tangent vector to the 2* curve at P. We can write;

g
ds = €,da

and then:

14

ds® = d5 e ds = (dz"€,) e (d2"E,) = (€, ® €, )da" dx

— !]l‘l,ll.lJ‘ (I.I'V.




At a given point P the manifold is flat, so:
.‘luu(])) = Ty -

A manifold with such a property is called pseudo-Riemannian. 1If g,,(P) = é,,
the manifold is called strictly Riemannian.

The basis is called orthonormal when @ e ¢, = 5} at any given point P,
Notice that since the tetrads are 4-dimensional we can write:

€ua (x )(;: ( I ) = Quv ( xT),

and
€pa(P)ey(P) = Ny .

The tetrads can vary along a given world-line, but always satisfying

€ua(T)ey(T) = Ny




“The happiest thought of my life”

r/. af

Albert Einstein

The key to relate space-time to gravitation is the equivalence principle introduced
by Einstein (1907):

At every space-time point in an arbitrary gravitational field it
is possible to choose a locally inertial coordinate system such that,
within a sufficiently small region of the point in question, the laws of
nature take the same form as in unaccelerated Cartesian coordinate
systems in absence of gravitation (fromulation by Weinberg 1972).




L Equivalence principle |

In an arbitrary spacetime it is always possible to find a reference system
such that, locally, all laws of physics can be expressed in it as those valid
for Minkowskian spacetime.
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in space far '

from any stars freely falling

towards the Earth



Pseudo-Riemannian spaces

In order to introduce gravitation in a general space-time we define a metric tensor
guv. such that its components can be related to those of a locally Minkowski space-
. . 2 . .
time defined by ds* = nypd&“ d&P through a general transformation:

) 9E* 3P

ds® = nug ryurrar— dxtdx" = g, ,dx"dx".

tangent flat




Pseudo-Riemannian spaces

d (O™ dat
ds \ dx* ds
'S ) a9 J
DEX d=at DY dat dat

Dt ds? u ArtdarY ds ds

Now. multiplying at both sides by dz?/9¢* and using;

e O™
Ot JEe

we get

2  dat da”
+ 17 = ().

(l.*»'.‘2 sV (].\' (].\'

A s the affine connection of the manifold:

where I'y,
IpA  J2ea
dr™ ¢

J = ‘ ‘ . *
RV 06 Dt Oav

l’/\ J—




Geodesic equation




X axS axf_,  ax? ax) X"

T 9xd ax® gx'c 8 Qxb gx'c gxdaxS

It 1s not a tensor!




Derivatives

The usual derivative is not tensor

ax'* 9xV " 9%x'*  9xV n

v dxHoxv ax"v




A covariant derivative of a vector field is a rank 2 tensor of type (1, 1). The
covariant divergence of a vector field yields a scalar field:

V, A" =3, A*(x) — Fa"#‘A“(x) = ¢ (x).

A tangent vector satisfies V'V, , =0.







Covariant derivative |

The covariant derivative possesses the following properties:

I. Linearity: For constants a and b one has V, (aA + bB*') = aV, A" + bV, B.

B...
B...

4. For a scalar field: V9o = ¢ ;.
5. Torsion free: V,V,0 = V,V, 0.
6. V, 8up =0.




l_‘abc — %gad(abgdc + acgbd o adgbc)'




Killing vectors

If there 1s a vector u pointing in the direction of a
symmetry of spacetime, then it can be shown that

[Cuis a Killing field: |
;‘; represents a global :
Symmetry B




Lie derivatives

[f there is a curve y on the manifold, such that its tangent vector is u* = dx* /dA
and a vector field A* is defined in a neighborhood of y, we can introduce a derivative
of A* along y as

CA* =A% P —uf WP = A% P —uy AP,

This derivative is a tensor, and it is usually called Lie derivative. It can be defined
for tensors of any type. A Killing vector field is such that

0. [TO, (PN

N
=
L=




The Lie derivative w.r.t. a Killing field annihilates the metric.



From the equation of motion

The metric represents the potential of the gravitational field
The connection the strength of of the field.



2.7 ) ‘ ,.u ‘ 2 o
d-x" ) dx" dx' 0 , . 0x*t 0%&
) ) w — . Nl
ds? MY ds ds / 0EY dxHox?

l |
Egha(a/l gva + 0 &€ua — Oa&uv)-

The affine connection represents the gravitational field.
The metric, the gravitational potential.



Pseudo-Riemannian spaces

The presence of gravity is indicated by the curvature of space-time. The Riemann
tensor, or curvature tensor, provides a measure of this curvature:

o __ o o «
UVA uk v ruv rav [Ty ruv

The form of the Riemann tensor for an affine-connected manifold can be
obtained through a coordinate transformation that makes the affine
connection vanish everywhere, 1.€.

The coordinate system X* exists if

ry,,— rnv.). + Iy

a —_—
AV 7 av uk raA Fuv =0




The Ricci tensor is defined as

Finally, the Ricci scalar is

The source of curvature 1s the energy-momentum tensor that represents
the physical properties of a material thing. For a perfect fluid:

#v—(p+1))llﬂllv Pg#v.




Towards General Relativity




Einstein field equations

.
& The field equations of General Relativity specify how the energy-
momentum tensor 1S related to the curvature.

(i) the Newtonian limit V2@ = 47 Gp suggests that it should contain terms no
higher than linear in the second order derivatives of the metric tensor;
(i1) since 7, is symmetric then K, must be symmetric as well.




Einstein field equations

The field equations of General Relativity specify how
the energy-momentum tensor 1is related to the curvature.

K[.LU p— aR,_w + bRg#v + A.g'uv,

K,w=aR,, +bRg,,.



(aR™ + bRg“");# —

Bianchi’s identities

>




Einstein field equations

Comparing with the weak field limit:

This 1s a set of ten non-linear partial differential equations for
the metric coefficients. In Newtonian gravity, otherwise, there
1s only one gravitational field equation. General Relativity
involves numerous non-linear differential equations.



Einstein field equations

Einstein equations:

G/.Ll/ — 87T G T/J,l/

'\

[ energy-momentum tensor
Einstein tensor (describes distribution of
(describes curvature matter in the spacetime)
of spacetime)




Einstein field equations

&
The conservation of mass-energy and momentum
can be derived from the field equations:

Contrary to classical electrodynamics, here the field equations
entail the energy-momentum conservation and the equations of
motion for free particles (i.e. for particles moving in the
gravitational field, treated here as a background pseudo-
Riemannian space-time).



Einstein field equations

1
RE— —§KR = —

2




Einstein field equations

In vacuum Iw=0

The Ricci tensor vanishes. The curvature tensor, which has 20
independent components, does not necessarily vanish. This means that
a gravitational field can exist in empty space only 1f the
dimensionality of space-time 1s 4 or higher. For spacetimes with lower
dimensionality, the curvature tensor vanishes it 7, = 0



Why spacetime is 4D?

No. of spacetime dimensions
No. of field equations

No. of independent components of R,

Gravitation 1n empty space can only exists if n>3



Einstein field equations with A

The field equations of General Relativity specify how the
energy-momentum tensor 1s related to the curvature. They are
ten non-linear differential equations for the metric coefficients.

The set of equations is not unique: we can add any constant multiple
of the metric tensor to the left member and still obtain a consistent set
of equations:







1 8 G
28R+ Aguy = =~

2
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T —U=5mgabc;“c;” —U,




Hilbert’'s way







5L ; 0
sda  gde M| 93,99 |




If there are non-gravitational fields present the action will have and additional
omponent:

1
S=—SgH+Sm =
2K




Since 6 Sgyg =0,




The Cauchy problem in GR

Let us prescribe initial data g |
and g, on S defined by x,/c=.

The dynamical equations are the
six equations defined by




The Cauchy problem in GR

When these equations are solved for the 10 second derivatives
0g,/0(x°)?, there appears a fourfold ambiguity, i.e. four

derivatives are left indeterminate. In order to completely fix
the metric it 1s necessary to impose four additional conditions.
These conditions are usually 1mposed upon the affine
connection:




The Cauchy problem in GR

The condition /#* = 0 implics > = 0, so the
coordinates are known as harmonic. With such
conditions it can be shown the existence, uniqueness
and stability of the solutions.



Conservation laws

Taking the covariant derivative to both sides of Einstein’s equations
and using Bianchi identities we get

ap = -
— 4+ V. (pu) =0,
ot

Continuity



Energy-momentum of gravitation

Because of the Equivalence Principle, it 1s always possible to choose a

coordinate system where the gravitational field locally vanishes. Hence, its
local energy i1s zero.

We can then define a quasi-tensor for the energy-momentum of gravity.

Quasi-tensors are objects that under global linear transformations behave like
tensors.




Since 7, can be interpreted as the contribution of gravitation to the

quasi-tensor O, we can expect that it should be expressed in

geometric terms only, 1.e. as a function of the affine connection and
the metric. Landau and Lifshitz (1962) found an expression for 7,

that contains only first derivatives and 1s symmetric:

V

4
v C o o o vr v y
= l()]tG[(zrp'lr(fy}’_rpy F,”;,—Fpa ]—;’)/y)(g“pg 7_gl‘ gpl)

we No (v vy Wy Wy Wy
+8" 8" (I, Lo + Do 1, + 15, )y + 1,5, 1)

Vp N0 1 Y 1 ) 4 H Y H Y
+ 8" (M, I, + T T + T Y + T TY)

no no oy " pn pn

_*_gpl)ga}/(rpﬂa rnvy o r/ﬁ} rovy) ]




It 1s possible to find 1n a curved spacetime a reference system
such that locally 7, = 0. Similarly, an adequate choice of

curvilinear coordinates in a flat space-time can yield non-
vanishing values for the components of 7. We infer from this

that the energy of the gravitational field is a global property in
GR, not a local one.




The Weyl tensor

The Weyl curvature tensor is the traceless component of the
curvature (Riemann) tensor. In other words, it 1s a tensor that
has the same symmetries as the Riemann tensor with the extra
condition that metric contraction yields zero.

P p)

C = R - (Zate Rawb — 2bic Rdla) + ——————— R galc2db
abcd abcd "9 Balc"dlb — 8b[c\d)a n— 1)(n —2) Salc8db




The Weyl tensor

In 4 dimensions

|
Cabed = Rabed + ;(gac Rab — &bcRda — 8ad Reb + 8bd Rea)

1
+ g(gacgdb — 8ad8ch)R.




The Weyl tensor

In 3 or less dimensions C 0

abcd:
a —
Cbad = 0.

Two metrics that are conformally related to each other, i.e.

?ab — ngab"




The Weyl tensor

The absence of structure in space-time (i.e. spatial
1sotropy and hence no gravitational principal null-
directions) corresponds to the absence of Weyl
conformal curvature:

C2=C,, Cehed =0,

When clumping takes place, the structure is
characterized by a non-zero Weyl curvature.



Two seminal papers

Uber Gravitationswellen.
Niherungsweise Integration der l"»lni,:l-iwhu
der Gravitation.

1916 1918



GWs 1n linear gravity

e We consider weak gravitational fields:
~ 2

T

flat Minkowski metric

e The GR field equations in vacuum reduce to the standard wave equation:
0? ‘
— V2 )k =0Oh* =0

* Comment: GR gravity like electromagnetism has a “gauge” freedom
associated with the choice of coordinate system. The above equation
applies in the so-called “transverse-traceless (TT)” gauge where

hop = 0, hz =N




Wave solutions

* Solving the previous wave equation in weak gravity is easy. The
solutions represent “plane waves”:

ikgx®

wave-vector

* Basic properties: A, k" =0, kok® =0

/

transverse waves null vector = propagation along light rays

: . Hy N N ot
OAmphtude. A — h,+(/+ + hxcx 00 00 0000
01 00 0010
T “loo-10 “lo100

two pOlﬂl‘iZﬂtiOllS 00 0 0 0000




GWs: more properties

« EM waves: at lowest order the radiation can be emitted by a dipole
source (I=1). Monopolar radiation is forbidden as a result of charge
conservation.

« GWs: the lowest allowed multipole is the quadrupole (1=2). The
monopole is forbidden as a result of mass conservation. Similarly,
dipole radiation is absent as a result of momentum conservation.

« GWs represents propagating “ripples in spacetime” or, more accurately,
a propagating curvature perturbation. The perturbed curvature
(Riemann tensor) is given by (in the TT gauge):

|
T n271.TT .
R‘]()A() e _§ df hJA . ], }1’ — 1, 2, 3




The quadrupole formula

* Einstein (1918) derived the quadrupole formula for gravitational radiation by solving the
linearized field equations with a source term:

c pe(t |7 — 7. 2
Dh.’"‘”(t,;i’) — —HT“U(t, I) —_— hMV — _ Kk dSI'T ( _‘|~l' . T |-l')
A7 [y |Z — &'|

* This solution suggests that the wave amplitude is proportional to the second time
derivative of the quadrupole moment of the source:

2G

h*" =
.,- (,{1

" e . | R
Q%(t —r/e) Qe = /(13;1.‘[) (;r“;r" - 5(5‘“’1‘2)

( quadrupole moment in the “I'T gauge” and at the retarded time t-r/c )

* This result is quite accurate for all sources, as long as the wavelength is much longer than
the source size R.




GW luminosity

e GWs carry energy. The stress-energy carried by GWs cannot be localized
within a wavelength. Instead, one can say that a certain amount of stress-
energy is contained in a region of the space which extends over several
wavelengths. The stress-energy tensor can be written as:

0‘1
cw € o 1. TT o 1.1j
L, = 39 ('(()ﬂh,l-j Oy hepp

e Using the previous quadrupole formula we obtain the GW luminosity:

dEcw

dt

&
Low = —

_/ ATy "7 —  Law :%)

<Q;w Qlw )




hM
(e, x)__4_G ¥ (et —1x =yl y)
> - yl, y) 3
X — | k4




1 l . . l
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C
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Multipolar expansion

. . 4G =, (—1)"
h* (ct, X) = —— )3 ( (")

Viyinoipg (g N7 -
. M# 172 (((fr)()il()iz"'("
€ =0

Ly

M#Vili2“'i€ (Cf) — / T’LV(CT, :{y)yil},‘& ce yit” d3—‘;




Compact source approximation

[ T% @3y, total energy of source particles (including rest mass energy) =
[T d‘“ ¢x total momentum of source particles in the x'-direction = P’ .
[ T &3y, integrated internal stresses in the source.

2G [(121"1((-1')]
r dt’? . *

. 00, . Quadrupole-moment
IY(ct) = / T (ct,y)y'y/ d’y, RO R RS
' density of the source
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RE) = L0, g+ 1 (3,8 g+, = 0, =y )

+ 307 h0) (D hgy — Dghyy) + 5 (8 hP7 — 50°h) (D, by, + 0y by, — dyhy,,).

(8,196 ) 3, hPT —2(85hP7 ), I

v)p %(%7’)%’3%

A1°9r = () and



X7 |
htt = AppCOS kAx)‘,




The final expression 1s simply the energy density associated with the
plane wave multiplied by its speed, and hence makes good physical sense
as the energy flux carried by the wave in its direction of propagation.









Basic estimates

e Another estimate for the GW amplitude can be derived from the flux formula

Lcw 3
Fow = = Oh|?
W= 4mr? T 167G Och]

e We obtain:

h ~ 10722 Eow \'* (1kHz ( T ) —-1/2 (15 Mpc
S —_—
10-4 Mg fow 1 ms r

for example, this formula could describe the GW strain from a supernova explosion at
the Virgo cluster during which the energy F g is released in GWs at a frequency of

1 kHz, and with signal duration of the order of 1 ms.

* This is why GWs are hard to detect: for a GW detector with arm length of [ = 4 ki
we are looking for changes in the arm-length of the order of

Al=hl=4x10"7em N
rp=8,4184(67) x 10-4 cm




Basic estimates (1)

¢ The quadrupole moment of a system is approximately equal to the mass M of
the part of the system that moves, times the square of the size R of the system.
This means that the 3rd-order time derivative of the quadrupole moment is:

| M R? | Mv?  Ey

v = mean velocity of source’s non-spherical motion,
Ens = kinetic energy of non-spherical motion

T = timescale for a mass to move from one side of the system to the other.

* For a self gravitating system: 7' ~ /R3/GM

e This relation provides a rough estimate of the characteristic frequency of the
system f ~ 2r/T.




GWs: polarization

e GWs come in two polarizations:

“ »

+” polarization “x” polarization







+ Waves




GWs and curvature

* As we mentioned, GWs represent a fluctuating curvature field.

) of compact mat
orbRing h othes produces ripg

o,
FrL5 050
PIP s,

‘\\'\\‘t:':.
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&y ;;‘:.\
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GWs vs EM waves

e Similarities:

v Propagation with the speed of light.
v Amplitude decreases as ~ 1/r.

v Frequency redshift (Doppler, gravitational, cosmological).
e Differences:

v GWs propagate through matter with little interaction. Hard to detect, but they
carry uncontaminated information about their sources.

v Strong GWs are generated by bulk (coherent) motion. They require strong
gravity/high velocities (compact objects like black holes and neutron star).

v EM waves originate from small-scale, incoherent motion of charged particles.
They are subject to “environmental” contamination (interstellar absorption etc.).




GW can propagate from
the inflationary period, if it
existed, to the present, |
Previous Farthest galaxy
contrary to EM waves recordholder Hubbie has seen

Redshift (2)




Effect on test particles

« We consider a pair of test particles on the cartesian axis Ox at
distances = from the origin and we assume a GW traveling
in the z-direction.

« Their distance will be given by the relation:

9 9
dl* = g, dz"dz” = ... = —g11dz” =

— (l - h-]] )(2.1‘())2 — [1 - h+ COS(u)f)] (2.1‘0)2

dl ~ [1 - %}br ('()S(w’f)] (2z¢)

—




Effect on test particles (II)

e Similarly for a pair of particles placed on the y-axis:

e Comment: the same result can be derived dl ~ [1 - ‘lh,+ cos(wt)] (2y0)

using the geodetic deviation equation. 2




GW emission from a binary system (I)

¢ The binary consists of the two bodies M1 and M2 at distances @jand a9
from the center of mass. The orbits are circular and lie on the x-y plane. The

orbital angular frequency is .

-0

e We alsodefine: a = a; + as. = M{My/M,




GW emission from a binary system (II)

¢ The only non-vanishing components of the quadrupole tensor are :

1
Qzz = —Qyy = (a3 M) + a3 My) cos®(Q) = 5,,@2 cos(292t)

| T

Quy = Quz = ;za %m(?ﬂt) (GW frequency = 2Q)

e And the GW luminosity of the system is (we use Kepler's 3rd law 9 = GM/a®)

Locw = —dE (,uQa )2(2sin?(201) + 2 cos*(20) )

32 G* M3 u?
5 5

5 ¢ a




GW emission from a binary system (I1I)

¢ The total energy of the binary system can be written as :

1 G M1 M, 1 GuM
E = =-02% (M a? + M-a?) — _ =
2 ( 101 + 202) a 2 a

e As the gravitating system loses energy by emitting radiation, the distance between

the two bodies shrinks at a rate:

dE GuM da . @ B _64 G3 M
dt  2a2 dt dt 5 ¢® a3

* The orbital frequency increases accordingly 7'/T = (3/2)a/a .
(initial separation)
5 ¢ ap
256 G3 uM4

* The system will coalesce after a time: T




GW emission from a binary system (IV)

e In this analysis we have assumed circular orbits. In general the orbits can be
elliptical, but it has been shown that GW emission circularizes them faster than

the coalescence timescale.

e The GW amplitude is (ignoring geometrical factors):

b~ 5 x 10-22 M \?? I f 3 115 Mpe
~ 2.8M, 0.7M, ) \ 100 Hz r

T

( set distance to the Virgo cluster, why? )




PSR 1913+16: a Nobel-prize GW source

¢ The now famous Hulse & Taylor binary neutron star system provided the first

astrophysical evidence of the existence of GWs'!

e The system’s parameters: r = 5Kpe, My~ My~ 14M,, T =T7h 45min

¢ Using the previous equations we can predict:

T = —2.4 x 10~ *2 sec/sec, faw = 7 x 107° Hz, h ~ 10723, 3.5 x 108 yr




Theory vs observations

e How can the orbital parameters be

™7 rrrrrrry

measured with such high precision? | line of %ero Orbital Decay

¢ One of the neutron stars is a pulsar,
emitting extremely stable periodic

radio pulses. The emission is ,
modulated by the orbital motion.
General Relativity Precdiction.—"\,

.
o

Cumulative shift of periasiren time (s)

e Since the discovery of the H-T

-
o

system in 1974 more such binaries \

—
w

(I [ B R A T B \
were found by astronomers. e




-0.76s




A toy model GW detector

e Consider a GW propagating along the z-axis (with a “+" polarization and frequency w),
impinging on an idealized detector consisting of two masses joined by a spring (of length
L) along the x-axis

M N

O0—-220.©O

» The resulting motion is that of a forced oscillator (with friction T, natural frequencywy ):

.. - P 1 ‘ 4
E+€/7 +wht = —5wLhye™
¢ The solution is: 2

3—"2+w/7)

1

. . . . - c — [N -
e The maximum amplitude is achieved at w & wp and has a size: Smax = W07 Lhy

* The detector can be optimized by increasing «“o TL .




¢ Bar detectors are narrow bandwidth instruments (like the previous toy-

model)

'S (I/vYHz

) 820 &0 &0 880 o) 9220 940 060 980 1000

Bar detectors
Joseph Weber

Allegro |
Aunga

| | |
i\ ! Explorer |
| _ Naubdus

'
L |

Frequency (H2)

Sensitivity curves of various bar detectors



Detectors: laser interferometry

+ Alaser interferometer is an alternative choice for GW detection, offering a
combination of very high sensitivities over a broad frequency band.

e Suspended mirrors play the role of “test-particles”, placed in perpendicular
directions. The light is reflected on the mirrors and returns back to the beam
splitter and then to a photodetector where the fringe pattern is monitored.




Catching a wave
How a laser-interferometer observatory works

.Before the wave‘

DETECTOR

Beams in step

BEAM
SPLITTER MIRROR

MIRROR

During the wave

Beams out of step

BEAM
SPLITTER MIRROR

‘_'_';'_‘ < >
AAAA—
L Arm 1

GRAVITATIONAL WAVE
Arm 2 lengthens

MIRROR

The sends out a beam €Y that s divided

by a beam splitter @. The half-beams produced follow

paths of identical length €), reflecting off mirrors to
recombine @, then travel in step to the detector ©.

Source: The Economist
1SL.

When a gravitational wave arrives, it disturbs space-
time, lengthening (in this example) the light’s path
along arm 2; when the beams recombine and arrive
at the detector, they are no longer in step.







Noise 1n interferometric detectors

e Seismic noise (low frequencies). At frequencies below 60 Hz, the noise in the
interferometers is dominated by seismic noise. The vibrations of the ground couple
to the mirrors via the wire suspensions which support them. This effect is strongly
suppressed by properly designed suspension systems. Still, seismic noise is very
difficult to eliminate at frequencies below 5-10 Hz.

¢ Photon shot noise (high frequencies).
The precision of the measurements
is restricted by fluctuations in the fringe
pattern due to fluctuations in the number
of detected photons. The number of
detected photons is proportional to the
intensity of the laser beam. Statistical
fluctuations in the number of detected _ . _
photons imply an uncertainty in the . ~ — it ema L

— GUAIT OIS

measurement of the arm length. | — A VW ) T,




Templates for GWs from BBH coalescence

(Brady, Craighton, Thorne 1998)

® IBBH

Inspiral (PN methods)

VY »

Ringdown
(Perturbation
theory)

hih) = 57 ws 2O
e ;@,)‘h

(Buonanno & Damour 2000)
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A catalog of 171 high-quality binary black-hole simulations for gravitational-wave

astronomy [arXiv: 1304.6077]

Abdul H. Mroué,! \hrk A. Scheel 2 Béla 97ilégyi 2 Harald P. Pfeiffer,! Michael Boyle,> Daniel A. Hemberger,®
Lawrence E. Kidder,? Geoffrey Lovelace,*:? Sergei Ossokine,!'5 Nicholas W. Taylor,2 Amil Zenginoglu,? Luisa
T. Buchman,? Tony Chu,! Evan Foley,! Matthew Giesler, Robert Owen,® and Saul A. Teukolsky®
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FIG. 3: Waveforms from all simulations in the catalog. Shown here are h, (blue) and h, (red) in a sky direction parallel to
the initial orbital plane of each simulation. All plots have the same horizontal scale, with each tick representing a time interval

of 2000M , where M is the total mass.




Detectors: the present (I)

The twin LIGO detectors (L = 4 km) at Livingston Louisiana and
Hanford Washington (US).




Livingston
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LIGO's interferometer 1s Akilomgcers

classified as a plackinep i e oo reiepdg
approximately 40 city blocks in length,

Dual Recycled, Fabry-Perot

Michelson Interferometer.

oll

? {3
laser beams 1 / 1000280

Actually one that is spit into two rays that go degree of movement LIGO laser
back and forth In interferometer vacuum tubes ':.a‘“;m.,“m

between procisely configured mirors Advanced LIGO is 10 times more soastive
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* A pre-stabilized 1064-nm Nd:YAG laser is injected and amplified.
* The power of the light field in the cavity 1s 100 kW.

- After an equivalent of approximately 280 trips down the 4 km length to the
far mirrors and back again, the two separate beams leave the arms and
recombine at the beam splitter.

- The beams returning from two arms are kept out of phase so that when the
arms are both in coherence and interference (as when there is no

. . . .
- gravitational wave passing tnrougn), tncir 11gnt waves sudiract, and no 11gil

od
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Strain (107)
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Gravitational waves exist

Compact objects very much like to black holes exist
Gravitational waves transport energy —> the gravitational
field has energy 1n absence of matter/radiation

Spacetime has a dimensionality of n=4 or higher.
Existence 1s non-local.




Going underground: the ET

e The Einstein Telescope will be the next generation underground detector.




The Einstein Telescope has been proposed by 8 European research institutes:

European Gravitational Observatory
Istituto Nazionale di Fisica Nucleare

The arms will be 10 km long
(compared to 4 km for LIGO,

Max Planck Society : :
Centre National de la Recherche Scientifique and 3 km for Virgo), and like
University of Birmingham LISA, there will be three
University of Glasgow arms in an equilateral
NIKHEF il triangle, with two detectors in
Cardiff University

each corner.

The low-frequency interferometers (1 to 250 Hz) will use optics
(.’C) witha beam power 0

\\.‘.’.'."'"; "\'.:.*".". power o1 5 V'\\,




Gravitational wave detection with pulsars

EPTA/LEAP
IPTA

International
Pulsar Timing
Array




NANOGrav

‘ NANOGraV stands for North American Nanohertz Observatory for |
“ Gravitational Waves. As the name implies, NANOGrav members are drawn |
| from across the United States and Canada . Their goal is to study the Universe |
using gravitational waves. NANOGrav uses the Galaxy itself to detect |
gravitational waves with the help of pulsars. This 1s known as a Pulsar Timing '




Going to space: the LISA detector

e Space-based detectors: “noise-free” environment, abundance of space!

e Long-arm baseline, low frequency sensitivity

e LISA: Up until recently a joint NASA/ESA mission, now an ESA mission only.
To be launched around 2020.

LISA (NASA-ESA)




e LISA
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Alternative theories of gravitation

= Scalar-tensor gravity (Brans & Dicke 1961)
Gravity with extra-dimensions
= f(R) gravity




Scalar-tensor gravity

The masses of the different fundamental particles would not
be basic intrinsic properties but a relational property
originated 1n the interaction with some cosmic field.

m;(xt) = \;o(xH).

020 = 4 A( .[.M \;:




Scalar-tensor gravity

8 1 1
Gas = 5 T + 3 (09006 = 5.000:90°9) + £ (Va Vs — gu09)
8w
Ho = 3+ 2w

Evidence — derived from the Cassini—-Huygens experiment — shows that the
value of w must exceed 40,000.



In STVG theory, gravity is not only an interaction mediated by a tensor field,
but has also scalar and vector aspects. The action of the full gravitational field

S =38GR + S5 +Ss +SMm,

1S:

1

_ oMV —
G \ 58 VymVym V(m))] :







Gravity with extra-dimensions

In April 1919 Kaluza noticed that when he solved Albert Einstein's equations for
general relativity using five dimensions, then Maxwell's equations for
electromagnetism emerged spontaneously.

Kaluza's fundamental msight was to write the action as:

S = : / R\/—q d*xdy.
16m(G JR




Gravity with extra-dimensions

The five-dimensional metric has 15 components. Ten components are
identified with the four-dimensional spacetime metric, four components
with the electromagnetic vector potential, and one component with an
unidentified scalar field sometimes called the the "dilaton".

The five-dimensional Einstein equations yield the four-dimensional
Einstein field equations, the Maxwell equations for the electromagnetic
field, and an equation for the scalar field. Kaluza also introduced the
hypothesis known as the "cylinder condition", that no component of the
five-dimensional metric depends on the fifth dimension.

Kaluza also set the scalar field equal to a constant, in which case
standard general relativity and electrodynamics are recovered
1dentically.



Gravity with extra-dimensions

N B 7 ¢2 A[l A, ¢2 A;;
gab = ¢2Ay ¢2 *
glw = Guv + ¢2AMAV’ §5u = gus = ¢2AV& 555 = ¢2

ds®* = §,,dz"dz’ = g, dx"dz” + ¢*(A,dz" + dz®)?
ab M
9941

Cylinder condition: 925 0
T Faﬁ = aaAg — 33Aa
D 1 m 3 D 1 3 pap
Rso = 0= ¢"V,(¢° Fap) Rgs = 0= O¢ = 26" F* Fop
~ 1. = 1 1 o ( us 1 as) L 1
Rpu - 5 ,,,,R =0= Rpu - Eg;wR = §¢ g FpaFu.‘] - Zg;wFaBF + z (vau¢ - gpuD¢)

This equation shows the remarkable result, called the "Kaluza miracle", that the precise
form for the electromagnetic stress-energy tensor emerges from the 5D vacuum
equations as a source in the 4D equations: field from the vacuum.



Gravity with extra-dimensions

A very interesting feature of the theory is that charge conservation can be inter-
preted as momentum conservation in the fifth dimension:

JH =2aTH .

where J# is the current density and « a constant. The variation of the action
yields both Einstein’s and Maxwell’s equations:

,  C°Kk
G LY =KT11,' Zlnd alF#“ — —J“.
/ / / G




Gravity with extra-dimensions

The action introduced by Kaluza describes 4-D gravity
along with electromagnetism. The price paid for this
unification was the introduction of a scalar field called
the dilaton (which was fixed by to be =1) and an extra
fifth dimension which is not observed.

In 1926, Oskar Klein proposed that the fourth spatial dimension 1s curled
up in a circle of very small radius, so that a particle moving a short
distance along that axis would return to where it began. The distance a
particle can travel before reaching its initial position is said to be the size
of the dimension. This extra dimension i1s a compact set, and the
phenomenon of having a space-time with compact dimensions 1s referred
to as compactification.



Gravity with extra-dimensions

Klein (1926) suggested that the fifth dimension was not observable because
it 15 compactified on a circle. This compactification can be achieved identifving
y with y + 27 R. The quantity R is the size of the extra dimension. Such a size
should be extremelv small in order to be not detected in experiments. The only
natural length of the theory is the Planck length: R =~ lp ~ 1073 1.







f(R)-Gravity

In f(R) gravity, the Lagrangian of the Einstein-Hilbert action:

| 1 —
Slg] = o Rv/—yg A4

-

is generalized to

: 1 —
'S[.’I] - /;.f(n)\f’/—.‘l‘]{"-

f(R) = aR?> + b R

f(R) =aexpP® + phR



f(R)-Gravity

o I |
F(R)Ruv — if(R)g;w + [guvD — Vuvv]F(R) = KT;wa

Higher than second order derivatives are possible in f(R)
theory depending on the explicit form of the function f



A

S — /d4x—g(R + @R?) + Smatter
16 G

1 8 G
— —Rguv | +2 (guvljR - V#V"R) - TT’“”
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Maxwell equations

0 —E'/Jc —E?/c —E3/C\
E'/c O —-B> B’
E’/c B 0 —B!
E’/c —B* B! 0

[F*] =

[ /*] = poyulc, i) = (cp, )),




Maxwell equations

9" = o).
Oy F o+ 0,F,, +3,F,y =0.

ot puv vt ou




Maxwell equations




Maxwell equations with gravity

VPR = o ",
V.F,.+VF_ +V F __=0.

ot uy vi ow pnt vo

dzx"’_i_ru dx"dx”  q _, dx’
dr? "Cdr dr mgy U dr




Einstein-Maxwell equations




