Introducción a la Astrofísica Relativista 2020

Práctica 6: procesos radiativos 2

- 1. ¿Cuánto tarda un electrón de energía $E_{\rm e}=100~{\rm GeV}$ en perder una fracción significativa de la misma por radiación Bremsstrahlung relativista, al propagarse en una nube de hidrógeno ionizado de densidad $n_{\rm H}=1000~{\rm cm}^{-3}$?
- 2. Un haz de electrones con una densidad de energía de 1 keV cm $^{-3}$ y una intensidad diferencial $N_{\rm e}=K_{\rm e}E_{\rm e}^{-2.1}$, incide sobre una nube homogénea de hidrógeno neutro de densidad $n_{\rm H}=200~{\rm cm}^{-3}$ y 1 pc de radio. El factor de Lorentz mínimo de los electrones es $\gamma_{\rm min}=2$ y el máximo $\gamma_{\rm max}=2000$. Calcular la emisión Bremsstrahlung relativista de esta población de electrones. Si la distancia a la nube es de 20 pc, ¿cuál es el flujo que se detectaría observando a energías por encima de 10 MeV?
- 3. La densidad media del medio interestelar es $n_{\rm ism} = 0.1~{\rm cm}^{-3}$. ¿Cuál es el camino libre medio de un protón de energía 100 GeV en ese medio, considerando que sufre únicamente pérdidas por producción de piones?
- 4. Hallar la razón de la tasa de pérdidas de energía por ionización a la de pérdidas por producción de piones para el protón del ejercicio anterior.
- 5. ¿Cuál debe ser la densidad en un plasma frío de piones para que el camino libre medio de un pión sea de 10⁵ cm? ¿Qué energía debe tener el pión para no decaer antes de interactuar?
- 6. Sobre una nube densa de 10^6 cm de espesor incide un flujo de protones de 10^{17} sr $^{-1}$ sr $^{-1}$ cm $^{-2}$ cuyas energías se distribuyen entre 2 GeV y 20 TeV según $I(E_p) = K_p E^{-2.1}$. Calcular y graficar la distribución espectral en energía (SED) de los fotones emitidos por decaimiento de piones neutros creados en colisiones pp. La densidad de la nube es $n=10^{19}$ cm $^{-3}$ y el área de incidencia es de 10^{20} cm 2 . Utilizar la aproximación de la funcional delta para la sección eficaz diferencial.